ClusterSickleJr {jrSiCKLSNMF} | R Documentation |
Cluster the \mathbf{H}
matrix
Description
Perform k-means, spectral clustering, clustering based off of the
index of the maximum latent factor, or Louvain community detection on the \mathbf{H}
matrix.
Defaults to k-means.
Usage
ClusterSickleJr(
SickleJr,
numclusts,
method = "kmeans",
neighbors = 20,
louvainres = 0.3
)
Arguments
SickleJr |
An object of class SickleJr |
numclusts |
Number of clusters; can be NULL when method is "max" or "louvain" |
method |
String holding the clustering method: can choose "kmeans" for k-means clustering, "spectral" for spectral clustering, "louvain" for Louvain community detection or "max" for clustering based on the maximum row value; note that "max" is only appropriate for jrSiCKLSNMF with L2 norm row regularization |
neighbors |
Number indicating the number of neighbors to use to generate the graphs for spectral clustering and Louvain community detection: both of these methods require the construction of a graph first (here we use KNN); defaults to 20 and unused when the clustering method equal to "kmeans" or "max" |
louvainres |
Numeric containing the resolution parameter for Louvain community detection; unused for all other methods |
Value
SickleJr- an object of class SickleJr with added clustering information
References
Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008). “Fast unfolding of communities in large networks.” Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008. ISSN 1742-5468, doi:10.1088/1742-5468/2008/10/P10008, 0803.0476, https://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008.
Lun AT, McCarthy DJ, Marioni JC (2016). “A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor.” F1000Research, 5. ISSN 1759796X, doi:10.12688/F1000RESEARCH.9501.2/DOI, https://pubmed.ncbi.nlm.nih.gov/27909575/.
Ng AY, Jordan MI, Weiss Y (2001). “On spectral clustering: analysis and an algorithm.” In Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, NIPS'01, 849–856.
Schliep K, Hechenbichler K (2016). “kknn: Weighted k-Nearest Neighbors.” https://cran.r-project.org/package=kknn.
Xu W, Liu X, Gong Y (2003). “Document clustering based on non-negative matrix factorization.” SIGIR '03: Proceedings of the 26th annual international ACM SIGIR conference on research and development in information retrieval, 267–273. doi:10.1145/860435.860485, https://dl.acm.org/doi/10.1145/860435.860485.
Examples
SimSickleJrSmall<-ClusterSickleJr(SimSickleJrSmall,3)
SimSickleJrSmall<-ClusterSickleJr(SimSickleJrSmall,method="louvain",neighbors=5)
SimSickleJrSmall<-ClusterSickleJr(SimSickleJrSmall,method="spectral",neighbors=5,numclusts=3)
#DO NOT DO THIS FOR REAL DATA; this is just to illustrate max clustering
SimSickleJrSmall<-SetLambdasandRowReg(SimSickleJrSmall,rowReg="L2Norm")
SimSickleJrSmall<-ClusterSickleJr(SimSickleJrSmall,method="max")