dneymanA {jointNmix} | R Documentation |
The Neyman-A probability function
Description
Computes the probability function of the Neyman-A distribution
Usage
dneymanA(x, lambda1, lambda2, K, log = FALSE)
Arguments
x |
vector of values |
lambda1 , lambda2 |
parameters of the distribution |
K |
truncation value for the infinite summation |
log |
logical. If TRUE, the logarithm of the probabilities is returned |
Details
The Neyman-A distribution has probability function
\frac{e^{-\lambda_1}\lambda_2^{x}}{x!}\sum_{k=0}^\infty\frac{(\lambda_1e^{-\lambda_2})^kk^x}{k!}
and is an overdispersion model. The summation is truncated to K.
Author(s)
Rafael A. Moral <rafael_moral@yahoo.com.br>, Clarice G. B. Demétrio and John Hinde
Examples
x <- 0:10
dneymanA(x, lambda1 = 2, lambda2 = 1.5, K = 50)
[Package jointNmix version 1.0 Index]