| traceworstRhat {jagshelper} | R Documentation |
Trace plots corresponding to the worst values of Rhat
Description
Trace plots with kernel densities will be created for parameters with the largest (worst) associated values of Rhat.
This function is primarily intended for parameters with a vector (or array) of values.
Rhat (Gelman-Rubin Convergence Diagnostic, or Potential Scale Reduction Factor)
is calculated within 'JAGS', and is
commonly used as a measure of convergence for a given parameter node. Values close
to 1 are seen as evidence of adequate convergence. n.eff is also calculated within 'JAGS', and may be interpreted as a crude measure of
effective sample size for a given parameter node.
Usage
traceworstRhat(x, p = NULL, n.eff = FALSE, margin = NULL, parmfrow = NULL, ...)
Arguments
x |
Output object returned from |
p |
Optional vector of parameters to subset |
n.eff |
Whether to plot parameters with the smallest associated values of |
margin |
In the case of a 2+ dimensional array associated with a given parameter, this will have the effect
of plotting the worst |
parmfrow |
Optional call to |
... |
additional plotting arguments or arguments to |
Value
NULL
Author(s)
Matt Tyers
References
Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple Sequences. Statistical Science, 7(4), 457–472. http://www.jstor.org/stable/2246093
See Also
plotRhats, check_Rhat, qq_postpred, ts_postpred, plot_postpred
Examples
## plotting everything
traceworstRhat(SS_out, parmfrow=c(3,2))
SS_out$Rhat # the associated values
traceworstRhat(SS_out, parmfrow=c(3,2), n.eff=TRUE)
SS_out$n.eff # the associated values
## in the case of a 2-D array, setting margin=2 gives the max Rhat
## associated with each column, rather than the global max
traceworstRhat(x=SS_out, p="cycle_s", margin=2, parmfrow=c(2,2))
SS_out$Rhat
traceworstRhat(x=SS_out, p="cycle_s", margin=2, parmfrow=c(2,2), n.eff=TRUE)
SS_out$n.eff