predict.jSDM {jSDM} | R Documentation |
Predict method for models fitted with jSDM
Description
Prediction of species probabilities of occurrence from models fitted using the jSDM package
Usage
## S3 method for class 'jSDM'
predict(
object,
newdata = NULL,
Id_species,
Id_sites,
type = "mean",
probs = c(0.025, 0.975),
...
)
Arguments
object |
An object of class | |||||||||
newdata |
An optional data frame in which explanatory variables can be searched for prediction. If omitted, the adjusted values are used. | |||||||||
Id_species |
An vector of character or integer indicating for which species the probabilities of presence on chosen sites will be predicted. | |||||||||
Id_sites |
An vector of integer indicating for which sites the probabilities of presence of specified species will be predicted. | |||||||||
type |
Type of prediction. Can be :
Using | |||||||||
probs |
Numeric vector of probabilities with values in [0,1], | |||||||||
... |
Further arguments passed to or from other methods. |
Value
Return a vector for the predictive posterior mean when type="mean"
, a data-frame with the mean and quantiles when type="quantile"
or an mcmc
object (see coda
package) with posterior distribution for each prediction when type="posterior"
.
Author(s)
Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>
Jeanne Clément <jeanne.clement16@laposte.net>
See Also
jSDM-package
jSDM_gaussian
jSDM_binomial_logit
jSDM_binomial_probit
jSDM_poisson_log
Examples
library(jSDM)
# frogs data
data(frogs, package="jSDM")
# Arranging data
PA_frogs <- frogs[,4:12]
# Normalized continuous variables
Env_frogs <- cbind(scale(frogs[,1]),frogs[,2],scale(frogs[,3]))
colnames(Env_frogs) <- colnames(frogs[,1:3])
# Parameter inference
# Increase the number of iterations to reach MCMC convergence
mod<-jSDM_binomial_probit(# Response variable
presence_data=PA_frogs,
# Explanatory variables
site_formula = ~.,
site_data = Env_frogs,
n_latent=2,
site_effect="random",
# Chains
burnin=100,
mcmc=100,
thin=1,
# Starting values
alpha_start=0,
beta_start=0,
lambda_start=0,
W_start=0,
V_alpha=1,
# Priors
shape=0.5, rate=0.0005,
mu_beta=0, V_beta=10,
mu_lambda=0, V_lambda=10,
# Various
seed=1234, verbose=1)
# Select site and species for predictions
## 30 sites
Id_sites <- sample.int(nrow(PA_frogs), 30)
## 5 species
Id_species <- sample(colnames(PA_frogs), 5)
# Predictions
theta_pred <- predict(mod,
Id_species=Id_species,
Id_sites=Id_sites,
type="mean")
hist(theta_pred, main="Predicted theta with simulated covariates")