plot_associations {jSDM} | R Documentation |
plot_associations plot species-species associations
Description
plot_associations plot species-species associations
Usage
plot_associations(
R,
radius = 5,
main = NULL,
cex.main = NULL,
circleBreak = FALSE,
top = 10L,
occ = NULL,
env_effect = NULL,
cols_association = c("#FF0000", "#BF003F", "#7F007F", "#3F00BF", "#0000FF"),
cols_occurrence = c("#BEBEBE", "#8E8E8E", "#5F5F5F", "#2F2F2F", "#000000"),
cols_env_effect = c("#1B9E77", "#D95F02", "#7570B3", "#E7298A", "#66A61E", "#E6AB02",
"#A6761D", "#666666"),
lwd_occurrence = 1,
species_order = "abundance",
species_indices = NULL
)
Arguments
R |
matrix of correlation | ||||||
radius |
circle's radius | ||||||
main |
title | ||||||
cex.main |
title's character size. NULL and NA are equivalent to 1.0. | ||||||
circleBreak |
circle break or not | ||||||
top |
number of top negative and positive associations to consider | ||||||
occ |
species occurence data | ||||||
env_effect |
environmental species effects | ||||||
cols_association |
color gradient for association lines | ||||||
cols_occurrence |
color gradient for species | ||||||
cols_env_effect |
color gradient for environmental effect | ||||||
lwd_occurrence |
lwd for occurrence lines | ||||||
species_order |
order species according to :
| ||||||
species_indices |
indices for sorting species |
Details
After fitting the jSDM with latent variables, the fullspecies residual correlation matrix : R=(R_{ij})
with i=1,\ldots, n_{species}
and j=1,\ldots, n_{species}
can be derived from the covariance in the latent variables such as :
can be derived from the covariance in the latent variables such as :
\Sigma_{ij}=\lambda_i' .\lambda_j
, in the case of a regression with probit, logit or poisson link function and
\Sigma_{ij} | = \lambda_i' .\lambda_j + V | if i=j |
= \lambda_i' .\lambda_j | else, |
this function represents the correlations computed from covariances :
R_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_ii\Sigma _jj}}
.
Value
No return value. Displays species-species associations.
Author(s)
Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>
Jeanne Clément <jeanne.clement16@laposte.net>
References
Pichler M. and Hartig F. (2021) A new method for faster and more accurate inference of species associations from big community data.
Methods in Ecology and Evolution, 12, 2159-2173 doi:10.1111/2041-210X.13687.
See Also
jSDM-package
get_residual_cor
jSDM_binomial_probit
jSDM_binomial_probit_long_format
jSDM_binomial_probit_sp_constrained
jSDM_binomial_logit
jSDM_poisson_log
Examples
library(jSDM)
# frogs data
data(mites, package="jSDM")
# Arranging data
PA_mites <- mites[,1:35]
# Normalized continuous variables
Env_mites <- cbind(mites[,36:38], scale(mites[,39:40]))
colnames(Env_mites) <- colnames(mites[,36:40])
Env_mites <- as.data.frame(Env_mites)
# Parameter inference
# Increase the number of iterations to reach MCMC convergence
mod <- jSDM_poisson_log(# Response variable
count_data=PA_mites,
# Explanatory variables
site_formula = ~ water + topo + density,
site_data = Env_mites,
n_latent=2,
site_effect="random",
# Chains
burnin=100,
mcmc=100,
thin=1,
# Starting values
alpha_start=0,
beta_start=0,
lambda_start=0,
W_start=0,
V_alpha=1,
# Priors
shape=0.5, rate=0.0005,
mu_beta=0, V_beta=10,
mu_lambda=0, V_lambda=10,
# Various
seed=1234, verbose=1)
# Calcul of residual correlation between species
R <- get_residual_cor(mod)$cor.mean
plot_associations(R, circleBreak = TRUE, occ = PA_mites, species_order="abundance")
# Average of MCMC samples of species enrironmental effect beta except the intercept
env_effect <- t(sapply(mod$mcmc.sp,
colMeans)[grep("beta_", colnames(mod$mcmc.sp[[1]]))[-1],])
colnames(env_effect) <- gsub("beta_", "", colnames(env_effect))
plot_associations(R, env_effect = env_effect, species_order="main env_effect")