jSDM_binomial_logit {jSDM}R Documentation

Binomial logistic regression

Description

The jSDM_binomial_logit function performs a Binomial logistic regression in a Bayesian framework. The function calls a Gibbs sampler written in 'C++' code which uses an adaptive Metropolis algorithm to estimate the conditional posterior distribution of model's parameters.

Usage

jSDM_binomial_logit(
  burnin = 5000,
  mcmc = 10000,
  thin = 10,
  presence_data,
  site_formula,
  trait_data = NULL,
  trait_formula = NULL,
  site_data,
  trials = NULL,
  n_latent = 0,
  site_effect = "none",
  beta_start = 0,
  gamma_start = 0,
  lambda_start = 0,
  W_start = 0,
  alpha_start = 0,
  V_alpha = 1,
  shape_Valpha = 0.5,
  rate_Valpha = 5e-04,
  mu_beta = 0,
  V_beta = 10,
  mu_gamma = 0,
  V_gamma = 10,
  mu_lambda = 0,
  V_lambda = 10,
  ropt = 0.44,
  seed = 1234,
  verbose = 1
)

Arguments

burnin

The number of burnin iterations for the sampler.

mcmc

The number of Gibbs iterations for the sampler. Total number of Gibbs iterations is equal to burnin+mcmc. burnin+mcmc must be divisible by 10 and superior or equal to 100 so that the progress bar can be displayed.

thin

The thinning interval used in the simulation. The number of mcmc iterations must be divisible by this value.

presence_data

A matrix n_{site} \times n_{species} indicating the number of successes (or presences) and the absence by a zero for each species at the studied sites.

site_formula

A one-sided formula of the form '~x1+...+xp' specifying the explanatory variables for the suitability process of the model, used to form the design matrix X of size n_{site} \times np.

trait_data

A data frame containing the species traits which can be included as part of the model. Default to NULL to fit a model without species traits.

trait_formula

A one-sided formula of the form '~ t1 + ... + tk + x1:t1 + ... + xp:tk' specifying the interactions between the environmental variables and the species traits to be considered in the model, used to form the trait design matrix Tr of size n_{species} \times nt and to set to 0 the \gamma parameters corresponding to interactions not taken into account according to the formula. Default to NULL to fit a model with all possible interactions between species traits found in trait_data and environmental variables defined by site_formula.

site_data

A data frame containing the model's explanatory variables by site.

trials

A vector indicating the number of trials for each site. n_i should be superior or equal to y_{ij}, the number of successes for observation n. If n_i=0, then y_{ij}=0. The default is one visit by site.

n_latent

An integer which specifies the number of latent variables to generate. Defaults to 0.

site_effect

A string indicating whether row effects are included as fixed effects ("fixed"), as random effects ("random"), or not included ("none") in the model. If fixed effects, then for parameter identifiability the first row effect is set to zero, which analogous to acting as a reference level when dummy variables are used. If random effects, they are drawn from a normal distribution with mean zero and unknown variance, analogous to a random intercept in mixed models. Defaults to "none".

beta_start

Starting values for \beta parameters of the suitability process for each species must be either a scalar or a np \times n_{species} matrix. If beta_start takes a scalar value, then that value will serve for all of the \beta parameters.

gamma_start

Starting values for \gamma parameters that represent the influence of species-specific traits on species' responses \beta, gamma_start must be either a scalar, a vector of length nt, np or nt.np or a nt \times np matrix. If gamma_start takes a scalar value, then that value will serve for all of the \gamma parameters. If gamma_start is a vector of length nt or nt.np the resulting nt \times np matrix is filled by column with specified values, if a np-length vector is given, the matrix is filled by row.

lambda_start

Starting values for \lambda parameters corresponding to the latent variables for each species must be either a scalar or a n_{latent} \times n_{species} upper triangular matrix with strictly positive values on the diagonal, ignored if n_latent=0. If lambda_start takes a scalar value, then that value will serve for all of the \lambda parameters except those concerned by the constraints explained above.

W_start

Starting values for latent variables must be either a scalar or a nsite \times n_latent matrix, ignored if n_latent=0. If W_start takes a scalar value, then that value will serve for all of the W_{il} with i=1,\ldots,n_{site} and l=1,\ldots,n_{latent}.

alpha_start

Starting values for random site effect parameters must be either a scalar or a n_{site}-length vector, ignored if site_effect="none". If alpha_start takes a scalar value, then that value will serve for all of the \alpha parameters.

V_alpha

Starting value for variance of random site effect if site_effect="random" or constant variance of the Gaussian prior distribution for the fixed site effect if site_effect="fixed". Must be a strictly positive scalar, ignored if site_effect="none".

shape_Valpha

Shape parameter of the Inverse-Gamma prior for the random site effect variance V_alpha, ignored if site_effect="none" or site_effect="fixed". Must be a strictly positive scalar. Default to 0.5 for weak informative prior.

rate_Valpha

Rate parameter of the Inverse-Gamma prior for the random site effect variance V_alpha, ignored if site_effect="none" or site_effect="fixed" Must be a strictly positive scalar. Default to 0.0005 for weak informative prior.

mu_beta

Means of the Normal priors for the \beta parameters of the suitability process. mu_beta must be either a scalar or a np-length vector. If mu_beta takes a scalar value, then that value will serve as the prior mean for all of the \beta parameters. The default value is set to 0 for an uninformative prior, ignored if trait_data is specified.

V_beta

Variances of the Normal priors for the \beta parameters of the suitability process. V_beta must be either a scalar or a np \times np symmetric positive semi-definite square matrix. If V_beta takes a scalar value, then that value will serve as the prior variance for all of the \beta parameters, so the variance covariance matrix used in this case is diagonal with the specified value on the diagonal. The default variance is large and set to 10 for an uninformative flat prior.

mu_gamma

Means of the Normal priors for the \gamma parameters. mu_gamma must be either a scalar, a vector of length nt, np or nt.np or a nt \times np matrix. If mu_gamma takes a scalar value, then that value will serve as the prior mean for all of the \gamma parameters. If mu_gamma is a vector of length nt or nt.np the resulting nt \times np matrix is filled by column with specified values, if a np-length vector is given, the matrix is filled by row. The default value is set to 0 for an uninformative prior, ignored if trait_data=NULL.

V_gamma

Variances of the Normal priors for the \gamma parameters. V_gamma must be either a scalar, a vector of length nt, np or nt.np or a nt \times np positive matrix. If V_gamma takes a scalar value, then that value will serve as the prior variance for all of the \gamma parameters. If V_gamma is a vector of length nt or nt.np the resulting nt \times np matrix is filled by column with specified values, if a np-length vector is given, the matrix is filled by row. The default variance is large and set to 10 for an uninformative flat prior, ignored if trait_data=NULL.

mu_lambda

Means of the Normal priors for the \lambda parameters corresponding to the latent variables. mu_lambda must be either a scalar or a n_{latent}-length vector. If mu_lambda takes a scalar value, then that value will serve as the prior mean for all of the \lambda parameters. The default value is set to 0 for an uninformative prior.

V_lambda

Variances of the Normal priors for the \lambda parameters corresponding to the latent variables. V_lambda must be either a scalar or a n_{latent} \times n_{latent} symmetric positive semi-definite square matrix. If V_lambda takes a scalar value, then that value will serve as the prior variance for all of \lambda parameters, so the variance covariance matrix used in this case is diagonal with the specified value on the diagonal. The default variance is large and set to 10 for an uninformative flat prior.

ropt

Target acceptance rate for the adaptive Metropolis algorithm. Default to 0.44.

seed

The seed for the random number generator. Default to 1234.

verbose

A switch (0,1) which determines whether or not the progress of the sampler is printed to the screen. Default is 1: a progress bar is printed, indicating the step (in %) reached by the Gibbs sampler.

Details

We model an ecological process where the presence or absence of species j on site i is explained by habitat suitability.

Ecological process :

y_{ij} \sim \mathcal{B}inomial(\theta_{ij},n_i)

where

if n_latent=0 and site_effect="none" logit(\theta_{ij}) = X_i \beta_j
if n_latent>0 and site_effect="none" logit(\theta_{ij}) = X_i \beta_j + W_i \lambda_j
if n_latent=0 and site_effect="fixed" logit(\theta_{ij}) = X_i \beta_j + \alpha_i
if n_latent>0 and site_effect="fixed" logit(\theta_{ij}) = X_i \beta_j + W_i \lambda_j + \alpha_i
if n_latent=0 and site_effect="random" logit(\theta_{ij}) = X_i \beta_j + \alpha_i and \alpha_i \sim \mathcal{N}(0,V_\alpha)
if n_latent>0 and site_effect="random" logit(\theta_{ij}) = X_i \beta_j + W_i \lambda_j + \alpha_i and \alpha_i \sim \mathcal{N}(0,V_\alpha)

In the absence of data on species traits (trait_data=NULL), the effect of species j: \beta_j; follows the same a priori Gaussian distribution such that \beta_j \sim \mathcal{N}_{np}(\mu_{\beta},V_{\beta}), for each species.

If species traits data are provided, the effect of species j: \beta_j; follows an a priori Gaussian distribution such that \beta_j \sim \mathcal{N}_{np}(\mu_{\beta_j},V_{\beta}), where \mu_{\beta_jp} = \sum_{k=1}^{nt} t_{jk}.\gamma_{kp}, takes different values for each species.

We assume that \gamma_{kp} \sim \mathcal{N}(\mu_{\gamma_{kp}},V_{\gamma_{kp}}) as prior distribution.

We define the matrix \gamma=(\gamma_{kp})_{k=1,...,nt}^{p=1,...,np} such as :

x_0 x_1 ... x_p ... x_{np}
__________________________________________________
t_0 | \gamma_{0,0} \gamma_{0,1} ... \gamma_{0,p} ... \gamma_{0,np} { effect of
| intercept environmental
| variables
t_1 | \gamma_{1,0} \gamma_{1,1} ... \gamma_{1,p} ... \gamma_{1,np}
... | ... ... ... ... ... ...
t_k | \gamma_{k,0} \gamma_{k,1} ... \gamma_{k,p} ... \gamma_{k,np}
... | ... ... ... ... ... ...
t_{nt} | \gamma_{nt,0} \gamma_{nt,1} ... \gamma_{nt,p} ... \gamma_{nt,np}
average
trait effect interaction traits environment

Value

An object of class "jSDM" acting like a list including :

mcmc.alpha

An mcmc object that contains the posterior samples for site effects \alpha_i, not returned if site_effect="none".

mcmc.V_alpha

An mcmc object that contains the posterior samples for variance of random site effect, not returned if site_effect="none" or site_effect="fixed".

mcmc.latent

A list by latent variable of mcmc objects that contains the posterior samples for latent variables W_l with l=1,\ldots,n_{latent}, not returned if n_latent=0.

mcmc.sp

A list by species of mcmc objects that contains the posterior samples for species effects \beta_j and \lambda_j if n_latent>0.

mcmc.gamma

A list by covariates of mcmc objects that contains the posterior samples for \gamma_p parameters with p=1,\ldots,np if trait_data is specified.

mcmc.Deviance

The posterior sample of the deviance (D) is also provided, with D defined as : D=-2\log(\prod_{ij} P(y_{ij}|\beta_j,\lambda_j, \alpha_i, W_i)).

logit_theta_latent

Predictive posterior mean of the probability to each species to be present on each site, transformed by logit link function.

theta_latent

Predictive posterior mean of the probability associated to the suitability process for each observation.

model_spec

Various attributes of the model fitted, including the response and model matrix used, distributional assumptions as link function, family and number of latent variables, hyperparameters used in the Bayesian estimation and mcmc, burnin and thin.

The mcmc. objects can be summarized by functions provided by the coda package.

Author(s)

Ghislain Vieilledent <ghislain.vieilledent@cirad.fr>

Jeanne Clément <jeanne.clement16@laposte.net>

References

Gelfand, A. E.; Schmidt, A. M.; Wu, S.; Silander, J. A.; Latimer, A. and Rebelo, A. G. (2005) Modelling species diversity through species level hierarchical modelling. Applied Statistics, 54, 1-20.

Latimer, A. M.; Wu, S. S.; Gelfand, A. E. and Silander, J. A. (2006) Building statistical models to analyze species distributions. Ecological Applications, 16, 33-50.

Ovaskainen, O., Tikhonov, G., Norberg, A., Blanchet, F. G., Duan, L., Dunson, D., Roslin, T. and Abrego, N. (2017) How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 20, 561-576.

See Also

plot.mcmc, summary.mcmc jSDM_binomial_probit jSDM_poisson_log

Examples

#==============================================
# jSDM_binomial_logit()
# Example with simulated data
#==============================================

#=================
#== Load libraries
library(jSDM)

#==================
#== Data simulation

#= Number of sites
nsite <- 50
#= Number of species
nsp <- 10
#= Set seed for repeatability
seed <- 1234

#= Number of visits associated to each site
set.seed(seed)
visits <- rpois(nsite,3)
visits[visits==0] <- 1

#= Ecological process (suitability)
x1 <- rnorm(nsite,0,1)
set.seed(2*seed)
x2 <- rnorm(nsite,0,1)
X <- cbind(rep(1,nsite),x1,x2)
np <- ncol(X)
set.seed(3*seed)
W <- cbind(rnorm(nsite,0,1),rnorm(nsite,0,1))
n_latent <- ncol(W)
l.zero <- 0
l.diag <- runif(2,0,2)
l.other <- runif(nsp*2-3,-2,2)
lambda.target <- matrix(c(l.diag[1],l.zero,l.other[1],
                          l.diag[2],l.other[-1]),
                        byrow=TRUE, nrow=nsp)
beta.target <- matrix(runif(nsp*np,-2,2), byrow=TRUE, nrow=nsp)
V_alpha.target <- 0.5
alpha.target <- rnorm(nsite,0,sqrt(V_alpha.target))
logit.theta <- X %*% t(beta.target) + W %*% t(lambda.target) + alpha.target
theta <- inv_logit(logit.theta)
set.seed(seed)
Y <- apply(theta, 2, rbinom, n=nsite, size=visits)

#= Site-occupancy model
# Increase number of iterations (burnin and mcmc) to get convergence
mod <- jSDM_binomial_logit(# Chains
  burnin=150,
  mcmc=150,
  thin=1,
  # Response variable
  presence_data=Y,
  trials=visits,
  # Explanatory variables
  site_formula=~x1+x2,
  site_data=X,
  n_latent=n_latent,
  site_effect="random",
  # Starting values
  beta_start=0,
  lambda_start=0,
  W_start=0,
  alpha_start=0,
  V_alpha=1,
  # Priors
  shape_Valpha=0.5,
  rate_Valpha=0.0005,
  mu_beta=0,
  V_beta=10,
  mu_lambda=0,
  V_lambda=10,
  # Various
  seed=1234,
  ropt=0.44,
  verbose=1)
#==========
#== Outputs

#= Parameter estimates
oldpar <- par(no.readonly = TRUE)
## beta_j
# summary(mod$mcmc.sp$sp_1[,1:ncol(X)])
mean_beta <- matrix(0,nsp,np)
pdf(file=file.path(tempdir(), "Posteriors_beta_jSDM_logit.pdf"))
par(mfrow=c(ncol(X),2))
for (j in 1:nsp) {
  mean_beta[j,] <- apply(mod$mcmc.sp[[j]][,1:ncol(X)],
                         2, mean)
  for (p in 1:ncol(X)) {
    coda::traceplot(mod$mcmc.sp[[j]][,p])
    coda::densplot(mod$mcmc.sp[[j]][,p],
      main = paste(colnames(
        mod$mcmc.sp[[j]])[p],
        ", species : ",j))
    abline(v=beta.target[j,p],col='red')
  }
}
dev.off()

## lambda_j
mean_lambda <- matrix(0,nsp,n_latent)
pdf(file=file.path(tempdir(), "Posteriors_lambda_jSDM_logit.pdf"))
par(mfrow=c(n_latent*2,2))
for (j in 1:nsp) {
  mean_lambda[j,] <- apply(mod$mcmc.sp[[j]]
                           [,(ncol(X)+1):(ncol(X)+n_latent)], 2, mean)
  for (l in 1:n_latent) {
    coda::traceplot(mod$mcmc.sp[[j]][,ncol(X)+l])
    coda::densplot(mod$mcmc.sp[[j]][,ncol(X)+l],
                   main=paste(colnames(mod$mcmc.sp[[j]])
                              [ncol(X)+l],", species : ",j))
    abline(v=lambda.target[j,l],col='red')
  }
}
dev.off()

# Species effects beta and factor loadings lambda
par(mfrow=c(1,2))
plot(beta.target, mean_beta,
     main="species effect beta",
     xlab ="obs", ylab ="fitted")
abline(a=0,b=1,col='red')
plot(lambda.target, mean_lambda,
     main="factor loadings lambda",
     xlab ="obs", ylab ="fitted")
abline(a=0,b=1,col='red')

## W latent variables
par(mfrow=c(1,2))
for (l in 1:n_latent) {
  plot(W[,l],
       summary(mod$mcmc.latent[[paste0("lv_",l)]])[[1]][,"Mean"],
       main = paste0("Latent variable W_", l),
       xlab ="obs", ylab ="fitted")
  abline(a=0,b=1,col='red')
}

## alpha
par(mfrow=c(1,3))
plot(alpha.target, summary(mod$mcmc.alpha)[[1]][,"Mean"],
     xlab ="obs", ylab ="fitted", main="site effect alpha")
abline(a=0,b=1,col='red')
## Valpha
coda::traceplot(mod$mcmc.V_alpha)
coda::densplot(mod$mcmc.V_alpha)
abline(v=V_alpha.target,col='red')

## Deviance
summary(mod$mcmc.Deviance)
plot(mod$mcmc.Deviance)

#= Predictions
par(mfrow=c(1,2))
plot(logit.theta, mod$logit_theta_latent,
     main="logit(theta)",
     xlab="obs", ylab="fitted")
abline(a=0 ,b=1, col="red")
plot(theta, mod$theta_latent,
     main="Probabilities of occurence theta",
     xlab="obs", ylab="fitted")
abline(a=0 ,b=1, col="red")
par(oldpar)

[Package jSDM version 0.2.6 Index]