plot.VariableAnalysis {itsdm} | R Documentation |
Display variable importance.
Description
Display informative and detailed figures of variable importance.
Usage
## S3 method for class 'VariableAnalysis'
plot(x, ...)
Arguments
x |
( |
... |
Not used. |
Value
A patchwork
of ggplot2
figure of variable importance
according to multiple metrics.
See Also
variable_analysis
, print.VariableAnalysis
Examples
# Using a pseudo presence-only occurrence dataset of
# virtual species provided in this package
library(dplyr)
library(sf)
library(stars)
library(itsdm)
# Prepare data
data("occ_virtual_species")
obs_df <- occ_virtual_species %>% filter(usage == "train")
eval_df <- occ_virtual_species %>% filter(usage == "eval")
x_col <- "x"
y_col <- "y"
obs_col <- "observation"
# Format the observations
obs_train_eval <- format_observation(
obs_df = obs_df, eval_df = eval_df,
x_col = x_col, y_col = y_col, obs_col = obs_col,
obs_type = "presence_only")
env_vars <- system.file(
'extdata/bioclim_tanzania_10min.tif',
package = 'itsdm') %>% read_stars() %>%
slice('band', c(1, 5, 12, 16))
# With imperfect_presence mode,
mod <- isotree_po(
obs_mode = "imperfect_presence",
obs = obs_train_eval$obs,
obs_ind_eval = obs_train_eval$eval,
variables = env_vars, ntrees = 20,
sample_size = 0.8, ndim = 2L,
seed = 123L, response = FALSE,
spatial_response = FALSE,
check_variable = FALSE)
var_analysis <- variable_analysis(
model = mod$model,
pts_occ = mod$observation,
pts_occ_test = mod$independent_test,
variables = mod$variables)
plot(var_analysis)
[Package itsdm version 0.2.1 Index]