plot_modelfit {itsadug} | R Documentation |
Visualization of the model fit for time series data.
Description
Plots the fitted values and the data for n
trials of time series data. For example, plots n
trials
of the same participant.
Usage
plot_modelfit(
x,
view,
event = NULL,
n = 3,
random = TRUE,
cond = NULL,
col = c(alpha(1), "red"),
add = FALSE,
eegAxis = FALSE,
fill = FALSE,
main = NULL,
xlab = NULL,
ylab = NULL,
ylim = NULL,
h0 = 0,
v0 = NULL,
transform = NULL,
hide.label = FALSE,
hide.legend = FALSE,
print.summary = getOption("itsadug_print"),
...
)
Arguments
x |
|
view |
Text string containing the predictor or column in the data to be displayed on the x-axis. Note that variables coerced to factors in the model formula won't work as view variables. |
event |
column name from the data
that specifies the time series from which |
n |
Number of time series to plot. Default is 3. Set to -1 for plotting all time series (which may take a considerable time). |
random |
Numeric: if set to TRUE (default), |
cond |
A named list of the values to use for the other predictor terms (not in view) or to select specific trials or time series to plot. |
col |
Two value vector specifiying the colors for the data and the modelfit respectively. |
add |
Logical: whether or not to add the lines to an existing plot, or start a new plot (default). |
eegAxis |
Logical: whether or not to reverse the y-axis, plotting the negative amplitudes upwards as traditionally is done in EEG research. If eeg.axes is TRUE, labels for x- and y-axis are provided, when not provided by the user. Default value is FALSE. |
fill |
Logical: whether or not to fill the area between the data and the fitted values with shading. Default is FALSE. |
main |
Changing the main title for the plot, see also title. |
xlab |
Changing the label for the x axis, defaults to a description of x. |
ylab |
Changing the label for the y axis, defaults to a description of y. |
ylim |
the y limits of the plot. |
h0 |
A vector indicating where to add solid horizontal lines for reference. By default no values provided. |
v0 |
A vector indicating where to add dotted vertical lines for reference. By default no values provided. |
transform |
Function for transforming the fitted values. Default is NULL. |
hide.label |
Logical: whether or not to hide the label (i.e., 'fitted values'). Default is FALSE. |
hide.legend |
Logical: whether or not to hide the legend. Default is FALSE. |
print.summary |
Logical: whether or not to print a summary.
Default set to the print info messages option
(see |
... |
other options to pass on to lines and plot,
see |
Notes
This function plots the fitted effects, including intercept and other predictors.
Author(s)
Jacolien van Rij
See Also
Other Model evaluation:
check_resid()
,
diagnostics()
Examples
data(simdat)
# Create grouping predictor for time series:
simdat$Event <- interaction(simdat$Subject, simdat$Trial)
# model without random effects:
m1 <- bam(Y ~ te(Time, Trial),
data=simdat)
plot_modelfit(m1, view='Time', event=simdat$Event)
# colorizing residuals:
plot_modelfit(m1, view='Time', event=simdat$Event, fill=TRUE)
# All trials of one subject:
## Not run:
# this produces error:
plot_modelfit(m1, view='Time', event=simdat$Event,
cond=list(Subject='a01'), n=-1)
## End(Not run)
# instead try this:
simdat$Subj <- ifelse(simdat$Subject=='a01', TRUE, FALSE)
plot_modelfit(m1, view='Time', event=simdat$Event,
cond=list(Subject=simdat$Subj), n=-1)
## Not run:
# Model with random intercepts for subjects:
m2 <- bam(Y ~ te(Time, Trial)+s(Subject, bs='re'),
data=simdat)
# now selecting a subject works, because it is in the model:
plot_modelfit(m2, view='Time', event=simdat$Event,
cond=list(Subject='a01'), n=-1, ylim=c(-13,13))
# Model with random effect and interactions:
m3 <- bam(Y ~ te(Time, Trial)+s(Time, Subject, bs='fs', m=1),
data=simdat)
plot_modelfit(m3, view='Time', event=simdat$Event,
cond=list(Subject='a01'), n=-1, ylim=c(-13,13))
## End(Not run)