| plot_modelfit {itsadug} | R Documentation | 
Visualization of the model fit for time series data.
Description
Plots the fitted values and the data for n 
trials of time series data. For example, plots n trials 
of the same participant.
Usage
plot_modelfit(
  x,
  view,
  event = NULL,
  n = 3,
  random = TRUE,
  cond = NULL,
  col = c(alpha(1), "red"),
  add = FALSE,
  eegAxis = FALSE,
  fill = FALSE,
  main = NULL,
  xlab = NULL,
  ylab = NULL,
  ylim = NULL,
  h0 = 0,
  v0 = NULL,
  transform = NULL,
  hide.label = FALSE,
  hide.legend = FALSE,
  print.summary = getOption("itsadug_print"),
  ...
)
Arguments
x | 
|
view | 
 Text string containing the predictor or column in the data to be displayed on the x-axis. Note that variables coerced to factors in the model formula won't work as view variables.  | 
event | 
 column name from the data 
that specifies the time series from which   | 
n | 
 Number of time series to plot. Default is 3. Set to -1 for plotting all time series (which may take a considerable time).  | 
random | 
 Numeric: if set to TRUE (default),   | 
cond | 
 A named list of the values to use for the other predictor terms (not in view) or to select specific trials or time series to plot.  | 
col | 
 Two value vector specifiying the colors for the data and the modelfit respectively.  | 
add | 
 Logical: whether or not to add the lines to an existing plot, or start a new plot (default).  | 
eegAxis | 
 Logical: whether or not to reverse the y-axis, plotting the negative amplitudes upwards as traditionally is done in EEG research. If eeg.axes is TRUE, labels for x- and y-axis are provided, when not provided by the user. Default value is FALSE.  | 
fill | 
 Logical: whether or not to fill the area between the data and the fitted values with shading. Default is FALSE.  | 
main | 
 Changing the main title for the plot, see also title.  | 
xlab | 
 Changing the label for the x axis, defaults to a description of x.  | 
ylab | 
 Changing the label for the y axis, defaults to a description of y.  | 
ylim | 
 the y limits of the plot.  | 
h0 | 
 A vector indicating where to add solid horizontal lines for reference. By default no values provided.  | 
v0 | 
 A vector indicating where to add dotted vertical lines for reference. By default no values provided.  | 
transform | 
 Function for transforming the fitted values. Default is NULL.  | 
hide.label | 
 Logical: whether or not to hide the label (i.e., 'fitted values'). Default is FALSE.  | 
hide.legend | 
 Logical: whether or not to hide the legend. Default is FALSE.  | 
print.summary | 
 Logical: whether or not to print a summary.
Default set to the print info messages option 
(see   | 
... | 
 other options to pass on to lines and plot, 
see   | 
Notes
This function plots the fitted effects, including intercept and other predictors.
Author(s)
Jacolien van Rij
See Also
Other Model evaluation: 
check_resid(),
diagnostics()
Examples
data(simdat)
# Create grouping predictor for time series:
simdat$Event <- interaction(simdat$Subject, simdat$Trial)
# model without random effects:
m1 <- bam(Y ~ te(Time, Trial),
    data=simdat)
plot_modelfit(m1, view='Time', event=simdat$Event)
# colorizing residuals:
plot_modelfit(m1, view='Time', event=simdat$Event, fill=TRUE)
# All trials of one subject:
## Not run: 
# this produces error:
plot_modelfit(m1, view='Time', event=simdat$Event, 
    cond=list(Subject='a01'), n=-1)
## End(Not run)
# instead try this:
simdat$Subj <- ifelse(simdat$Subject=='a01', TRUE, FALSE)
plot_modelfit(m1, view='Time', event=simdat$Event, 
    cond=list(Subject=simdat$Subj), n=-1)
## Not run: 
# Model with random intercepts for subjects:
m2 <- bam(Y ~ te(Time, Trial)+s(Subject, bs='re'),
    data=simdat)
# now selecting a subject works, because it is in the model:
plot_modelfit(m2, view='Time', event=simdat$Event, 
    cond=list(Subject='a01'), n=-1, ylim=c(-13,13))
# Model with random effect and interactions:
m3 <- bam(Y ~ te(Time, Trial)+s(Time, Subject, bs='fs', m=1),
    data=simdat)
plot_modelfit(m3, view='Time', event=simdat$Event, 
    cond=list(Subject='a01'), n=-1, ylim=c(-13,13))
## End(Not run)