plot_data {itsadug} | R Documentation |
Visualization of the model fit for time series data.
Description
Plots the data, fitted values, or residuals.
Usage
plot_data(
model,
view,
split_by = NULL,
cond = NULL,
input = "data",
rm.ranef = NULL,
alpha = NULL,
col = NULL,
add = FALSE,
eegAxis = FALSE,
main = NULL,
xlab = NULL,
ylab = NULL,
ylim = NULL,
h0 = 0,
v0 = NULL,
hide.label = FALSE,
transform = NULL,
transform.view = NULL,
print.summary = getOption("itsadug_print"),
...
)
Arguments
model |
|
view |
Text string containing the predictor or column in the data to be displayed on the x-axis. Note that variables coerced to factors in the model formula won't work as view variables. |
split_by |
Vector with names of model predictors that determine
the time series in the data, or should be used to split the ACF plot by.
Alternatively, |
cond |
A named list of the values to use for the other predictor terms (not in view) or to select specific trials or time series to plot. |
input |
Text string: 'data' (default) plots the data, 'resid' plots the model residuals, and 'fitted' plots the fitted values. |
rm.ranef |
Logical: whether or not to include the random effects in
the model predictions. Default is TRUE. Relevant for |
alpha |
Value between 0 and 1 indicating the transparency. A value of 0 is completely transparant, whereas a value of 1 is completely untransparant. |
col |
Vector with one color value (i.e., all data points will have the
same color), color values for each grouping condition specified in
|
add |
Logical: whether or not to add the lines/points to an existing plot, or start a new plot (default). |
eegAxis |
Logical: whether or not to reverse the y-axis, plotting the negative amplitudes upwards as traditionally is done in EEG research. If eeg.axes is TRUE, labels for x- and y-axis are provided, when not provided by the user. Default value is FALSE. |
main |
Changing the main title for the plot, see also title. |
xlab |
Changing the label for the x axis, defaults to a description of x. |
ylab |
Changing the label for the y axis, defaults to a description of y. |
ylim |
the y limits of the plot. |
h0 |
A vector indicating where to add solid horizontal lines for reference. By default no values provided. |
v0 |
A vector indicating where to add dotted vertical lines for reference. By default no values provided. |
hide.label |
Logical: whether or not to hide the label (i.e., 'fitted values'). Default is FALSE. |
transform |
Function for transforming the fitted values. Default is NULL. |
transform.view |
Function for transforming the view values. Default is NULL. |
print.summary |
Logical: whether or not to print a summary.
Default set to the print info messages option
(see |
... |
other options to pass on to lines and plot,
see |
Notes
This function plots the fitted effects, including intercept and other predictors.
Author(s)
Jacolien van Rij, idea of Tino Sering
See Also
Other Functions for model inspection:
dispersion()
,
fvisgam()
,
gamtabs()
,
inspect_random()
,
plot_parametric()
,
plot_smooth()
,
plot_topo()
,
pvisgam()
Examples
data(simdat)
## Not run:
# Create grouping predictor for time series:
simdat$Event <- interaction(simdat$Subject, simdat$Trial)
# model without random effects:
m1 <- bam(Y ~ te(Time, Trial) + s(Subject, bs='re'),
data=simdat)
# All data points, without clustering:
plot_data(m1, view='Time')
# All data, clustered by Trial (very small dots):
plot_data(m1, view='Time', split_by='Trial',
cex=.25)
# Add a smooth for each trial:
plot_smooth(m1, view='Time', plot_all='Trial',
add=TRUE, rm.ranef=TRUE)
# Add the model predictions in same color:
plot_smooth(m1, view='Time', plot_all='Trial', add=TRUE, rm.ranef=TRUE)
# Alternatively, use data to select events:
plot_data(m1, view='Time', split_by=list(Event=simdat$Event),
type='l')
# which is the same as:
plot_data(m1, view='Time', split_by=list(Subject=simdat$Subject, Trial=simdat$Trial),
type='l')
# Only for Trial=0
plot_data(m1, view='Time', split_by=list(Event=simdat$Event),
cond=list(Trial=0), type='l')
# This is the same:
plot_data(m1, view='Time', split_by='Subject',
cond=list(Trial=0), type='l')
# Add subject smooths:
plot_smooth(m1, view='Time', plot_all='Subject',
cond=list(Trial=0), add=TRUE)
# Change the colors:
plot_data(m1, view='Time', split_by='Subject',
cond=list(Trial=0), type='l', col='gray', alpha=1)
## End(Not run)