inspect_random {itsadug} | R Documentation |
Inspection and interpretation of random factor smooths.
Description
Inspection and interpretation of random factor smooths.
Usage
inspect_random(
model,
select = 1,
fun = NULL,
cond = NULL,
n.grid = 30,
print.summary = getOption("itsadug_print"),
plot = TRUE,
add = FALSE,
main = NULL,
xlab = NULL,
ylab = NULL,
ylim = NULL,
h0 = 0,
v0 = NULL,
eegAxis = FALSE,
...
)
Arguments
model |
|
select |
A number, indicating the model term to be selected. |
fun |
A string or function description to apply to the random effects estimates. When NULL (default), the estimates for the random effects are returned. |
cond |
A named list of the values to restrict the estimates for the random predictor terms. When NULL (default) all levels are returned. |
n.grid |
Number of data points estimated for each random smooth. |
print.summary |
Logical: whether or not to print a summary of the
values selected for each predictor.
Default set to the print info messages option
(see |
plot |
Logical: whether or not to plot the random effect estimates (TRUE by default). |
add |
Logical: whether or not to add the random effect estimates to an existing plot (FALSE by default). |
main |
Changing the main title for the plot, see also title. |
xlab |
Changing the label for the x axis, defaults to a description of x. |
ylab |
Changing the label for the y axis, defaults to a description of y. |
ylim |
Changing the y limits of the plot. |
h0 |
A vector indicating where to add solid horizontal lines for reference. By default 0. |
v0 |
A vector indicating where to add dotted vertical lines for reference. By default no values provided. |
eegAxis |
Whether or not to reverse the y-axis (plotting negative upwards). |
... |
Value
A data frame with estimates for random effects is optionally returned.
Author(s)
Jacolien van Rij
See Also
Other Functions for model inspection:
dispersion()
,
fvisgam()
,
gamtabs()
,
plot_data()
,
plot_parametric()
,
plot_smooth()
,
plot_topo()
,
pvisgam()
Examples
# load data:
data(simdat)
## Not run:
# Condition as factor, to have a random intercept
# for illustration purposes:
simdat$Condition <- as.factor(simdat$Condition)
# Model with random effect and interactions:
m2 <- bam(Y ~ s(Time) + s(Trial)
+ ti(Time, Trial)
+ s(Condition, bs='re')
+ s(Time, Subject, bs='fs', m=1),
data=simdat)
# extract with wrong select value:
newd <- inspect_random(m2, select=4)
# results in warning, automatically takes select=5
head(newd)
inspect_random(m2, select=5, cond=list(Subject=c('a01','a02','a03')))
# Alternatively, fix random effect of Condition, and plot
# random effects for subjects with lattice:
newd <- inspect_random(m2, select=5,
cond=list(Subject=unique(simdat[simdat$Condition==0,'Subject'])),
plot=FALSE)
# Make lattice plot:
require(lattice)
lattice::xyplot(fit~Time | Subject,
data=newd, type='l',
xlab='Time', ylab='Partial effect')
# Using argument 'fun':
inspect_random(m2, select=5, fun=mean,
cond=list(Subject=unique(simdat[simdat$Condition==0,'Subject'])))
inspect_random(m2, select=5, fun=mean,
cond=list(Subject=unique(simdat[simdat$Condition==2,'Subject'])),
col='red', add=TRUE)
## End(Not run)
# see the vignette for examples:
vignette('overview', package='itsadug')