| acf_n_plots {itsadug} | R Documentation | 
Generate N ACF plots of individual or aggregated time series.
Description
Generate N ACF plots of individual or aggregated time series.
Usage
acf_n_plots(
  x,
  n = 5,
  split_by = NULL,
  cond = NULL,
  max_lag = NULL,
  fun = mean,
  plot = TRUE,
  random = F,
  mfrow = NULL,
  add = FALSE,
  print.summary = getOption("itsadug_print"),
  ...
)
Arguments
| x | A vector with time series data, typically residuals of a regression model. | 
| n | The number of plots to generate. | 
| split_by | List of vectors (each with equal length as  | 
| cond | Named list with a selection of the time series events
specified in  | 
| max_lag | Maximum lag at which to calculate the acf. Default is the maximum for the longest time series. | 
| fun | The function used when aggregating over time series 
(depending on the value of  | 
| plot | Logical: whether or not to produce plot. Default is TRUE. | 
| random | Logical: determine randomly which  | 
| mfrow | A vector of the form c(nr, nc). The figures will be drawn in an nr-by-nc array on the device by rows. | 
| add | Logical: whether to add the plots to an exiting plot window or not. Default is FALSE. | 
| print.summary | Logical: whether or not to print summary.
Default set to the print info messages option 
(see  | 
| ... | Other arguments for plotting, see  | 
Value
n ACF plots providing information about the autocorrelation 
in x.
Author(s)
Jacolien van Rij, R. Harald Baayen
See Also
Use acf for the original ACF function, 
and acf_plot for an ACF that takes into account time series 
in the data.
Other functions for model criticism: 
acf_plot(),
acf_resid(),
derive_timeseries(),
resid_gam(),
start_event(),
start_value_rho()
Examples
data(simdat)
# Separate ACF for each time series:
acf_n_plots(simdat$Y, split_by=list(simdat$Subject, simdat$Trial))
# Average ACF per participant:
acf_n_plots(simdat$Y, split_by=list(simdat$Subject))
## Not run: 
# Data treated as single time series. Plot is added to current window.
# Note: 1 time series results in 1 plot.
acf_n_plots(simdat$Y, add=TRUE)
# Plot 4 ACF plots doesn't work without splitting data:
acf_n_plots(simdat$Y, add=TRUE, n=4)
# Plot ACFs of 4 randomly selected time series:
acf_n_plots(simdat$Y, random=TRUE, n=4, add=TRUE, 
    split_by=list(simdat$Subject, simdat$Trial))
## End(Not run)
#---------------------------------------------
# When using model residuals
#---------------------------------------------
## Not run: 
# add missing values to simdat:
simdat[sample(nrow(simdat), 15),]$Y <- NA
# simple linear model:
m1 <- lm(Y ~ Time, data=simdat)
# This will generate an error:
# acf_n_plots(resid(m1), split_by=list(simdat$Subject, simdat$Trial))
# This should work:
el.na <- missing_est(m1)
acf_n_plots(resid(m1), 
     split_by=list(simdat[-el.na,]$Subject, simdat[-el.na,]$Trial))
# This should also work:
simdat$res <- NA
simdat[!is.na(simdat$Y),]$res <- resid(m1)
acf_n_plots(simdat$res, split_by=list(simdat$Subject, simdat$Trial))
## End(Not run)
# see the vignette for examples:
vignette('acf', package='itsadug')