isa.unique {isa2}R Documentation

Filter out biclusters that are very similar to each other

Description

From a potentially non-unique set of ISA biclusters, create a unique set by removing all biclusters that are similar to others.

Usage

## S4 method for signature 'list,list'
 isa.unique(normed.data, isaresult, ...)

Arguments

normed.data

The normalized input data, a list of two matrices, usually the output of isa.normalize.

isaresult

The result of an ISA run, a set of biclusters.

...

Additional arguments, see details below.

Details

This function can we called as

    isa.unique(normed.data, isaresult, method = c("cor"),
               ignore.div = TRUE, cor.limit = 0.9,
	       neg.cor = TRUE, drop.zero = TRUE)
	     

where the arguments are:

normed.data

The normalized input data, a list of two matrices, usually the output of isa.normalize.

isaresult

The result of an ISA run, a set of biclusters.

method

Character scalar giving the method to be used to determine if two biclusters are similar. Right now only ‘cor’ is implemented, this keeps both biclusters if their Pearson correlation is less than cor.limit, both for their row and column scores. See also the neg.cor argument.

ignore.div

Logical scalar, if TRUE, then the divergent biclusters will be removed.

cor.limit

Numeric scalar, giving the correlation limit for the ‘cor’ method.

neg.cor

Logical scalar, if TRUE, then the ‘cor’ method considers the absolute value of the correlation.

drop.zero

Logical scalar, whether to drop biclusters that have all zero scores.

Because of the nature of the ISA algorithm, the set of biclusters created by isa.iterate is not unique; many input seeds may converge to the same biclusters, even if the input seeds are not random.

isa.unique filters a set of biclusters and removed the ones that are very similar to ones that were already found for another seed.

Value

A named list, the filtered isaresult. See the return value of isa.iterate for the details.

Author(s)

Gabor Csardi Gabor.Csardi@unil.ch

References

Bergmann S, Ihmels J, Barkai N: Iterative signature algorithm for the analysis of large-scale gene expression data Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Mar;67(3 Pt 1):031902. Epub 2003 Mar 11.

Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N: Revealing modular organization in the yeast transcriptional network Nat Genet. 2002 Aug;31(4):370-7. Epub 2002 Jul 22

Ihmels J, Bergmann S, Barkai N: Defining transcription modules using large-scale gene expression data Bioinformatics 2004 Sep 1;20(13):1993-2003. Epub 2004 Mar 25.

See Also

isa2-package for a short introduction on the Iterative Signature Algorithm. See isa for an easy way of running ISA.

Examples

## Create an ISA module set
set.seed(1)
insili <- isa.in.silico(noise=0.01)

## Random seeds
seeds <- generate.seeds(length=nrow(insili[[1]]), count=20)

## Normalize input matrix
nm <- isa.normalize(insili[[1]])

## Do ISA
isares <- isa.iterate(nm, row.seeds=seeds, thr.row=2, thr.col=1)

## Check correlation among modules
cc <- cor(isares$rows)
if (interactive()) { hist(cc[lower.tri(cc)],10) }

## Some of them are quite high, how many?
undiag <- function(x) { diag(x) <- 0; x }
sum(undiag(cc) > 0.99, na.rm=TRUE)

## Eliminate duplicated modules
isares.unique <- isa.unique(nm, isares)

## How many modules left?
ncol(isares.unique$rows)

## Double check
cc2 <- cor(isares.unique$rows)
if (interactive()) { hist(cc2[lower.tri(cc2)],10) }

## High correlation?
sum(undiag(cc2) > 0.99, na.rm=TRUE)


[Package isa2 version 0.3.6 Index]