qip_index {irt} | R Documentation |
Calculate Quality of Item Pool Index
Description
The QIP Index can take values between 0 and 1 and indicates an item pool’s level of efficiency. A value of 1 signifies an optimum item pool for that examinee group. If one adds redundant items to an item pool that cannot be used by the CAT algorithm, the QIP Index will not increase or will increase minimally. In this sense, the QIP Index is an indicator of the item pools’ deficiency, instead of redundancy. However, if an exposure control mechanism is within test specifications, the QIP index can measure whether the redundancy in the item pool supports the exposure control method. See Gonulates (2019) for details.
Note that this function will best work with Rasch or 1PL models. It will not work with polytomous items.
Usage
qip_index(cat_sim_output, summary_func = NULL, ...)
Arguments
cat_sim_output |
This is a list object containing elements that are
|
summary_func |
A string representing the function that will be applied
to individual QIP values for a simulee. The default is |
... |
Additional arguments that will be passed to the
Since |
Value
A vector or matrix of QIP values or the summary statistics of QIP values.
Author(s)
Emre Gonulates
References
Gönülateş, E. (2019). Quality of Item Pool (QIP) Index: A Novel Approach to Evaluating CAT Item Pool Adequacy. Educational and Psychological Measurement, 79(6), 1133–1155. <doi:10.1177/0013164419842215>
Examples
cd <- create_cat_design(ip = generate_ip(n = 30), next_item_rule = 'mfi',
termination_rule = 'max_item',
termination_par = list(max_item = 10))
cat_output <- cat_sim(true_ability = rnorm(10), cd = cd)
qip_index(cat_output)
# Return result as list elements
qip_index(cat_output, simplify = FALSE)
# Summarize QIP values:
qip_index(cat_output, summary_func = "mean")
qip_index(cat_output, summary_func = "median")
qip_index(cat_output, summary_func = "min")
qip_index(cat_output, summary_func = "max")
qip_index(cat_output, summary_func = "quantile", prob = .25)
qip_index(cat_output, summary_func = "quantile", prob = c(.25, .5, .75))
qip_index(cat_output, summary_func = "quantile", prob = c(.25, .5, .75),
simplify = FALSE)