| plot_empirical_icc {irt} | R Documentation | 
Plot Empirical Item characteristic curve
Description
plot_emprical_icc plots empirical item characteristic curve.
It plots observed p-values vs. expected p-values grouped into bins based
theta scores (or any score supplied). Optionally, provide theta
vector, otherwise examinee abilities will be estimated by
est_ability(..., type = "eap"). This will slow down the plotting
function.
Usage
plot_empirical_icc(
  resp,
  item,
  ip,
  theta = NULL,
  bins = 10,
  binwidth = NULL,
  title = "",
  suppress_plot = FALSE,
  base_r_graph = FALSE,
  ...
)
Arguments
resp | 
 Response matrix.  | 
item | 
 The column number, column name or the 'ID' of the the item that should be plotted.  | 
ip | 
 An   | 
theta | 
 A vector of examinee abilities.  | 
bins | 
 An integer larger than 2 representing of ability groups examinees
should be grouped into. The default is   | 
binwidth | 
 This determines the width of each bin of the theta scale. Within each bin, there might be different number of examinees.  | 
title | 
 Title of the plot. The default value is   | 
suppress_plot | 
 If   | 
base_r_graph | 
 If   | 
... | 
 Extra parameters that will pass to   | 
Value
Depending on the value of suppress_plot function either prints
the empirical item characteristic curve or returns the plot object.
Author(s)
Emre Gonulates
Examples
ip <- generate_ip(model = c("3PL", "GRM"), n = 20)
true_theta <- rnorm(2000)
resp <- generate_resp_set(ip = ip, theta = true_theta)
plot_empirical_icc(resp, "Item_3", ip = ip, theta = true_theta)
plot_empirical_icc(resp, 3, ip = ip, theta = true_theta)
# Change the number of bins
plot_empirical_icc(resp, 3, ip = ip, theta = true_theta, bins = 10)
# Fixed bin width
plot_empirical_icc(resp, 3, ip = ip, theta = true_theta, binwidth = .2)
# Plot GRM item's ICC
plot_empirical_icc(resp, "Item_4", ip = ip, theta = true_theta)
plot_empirical_icc(resp, "Item_4", ip = ip, theta = true_theta, binwidth = .2)