plot_empirical_icc {irt} | R Documentation |
Plot Empirical Item characteristic curve
Description
plot_emprical_icc
plots empirical item characteristic curve.
It plots observed p-values vs. expected p-values grouped into bins based
theta scores (or any score supplied). Optionally, provide theta
vector, otherwise examinee abilities will be estimated by
est_ability(..., type = "eap")
. This will slow down the plotting
function.
Usage
plot_empirical_icc(
resp,
item,
ip,
theta = NULL,
bins = 10,
binwidth = NULL,
title = "",
suppress_plot = FALSE,
base_r_graph = FALSE,
...
)
Arguments
resp |
Response matrix. |
item |
The column number, column name or the 'ID' of the the item that should be plotted. |
ip |
An |
theta |
A vector of examinee abilities. |
bins |
An integer larger than 2 representing of ability groups examinees
should be grouped into. The default is |
binwidth |
This determines the width of each bin of the theta scale. Within each bin, there might be different number of examinees. |
title |
Title of the plot. The default value is |
suppress_plot |
If |
base_r_graph |
If |
... |
Extra parameters that will pass to |
Value
Depending on the value of suppress_plot
function either prints
the empirical item characteristic curve or returns the plot object.
Author(s)
Emre Gonulates
Examples
ip <- generate_ip(model = c("3PL", "GRM"), n = 20)
true_theta <- rnorm(2000)
resp <- generate_resp_set(ip = ip, theta = true_theta)
plot_empirical_icc(resp, "Item_3", ip = ip, theta = true_theta)
plot_empirical_icc(resp, 3, ip = ip, theta = true_theta)
# Change the number of bins
plot_empirical_icc(resp, 3, ip = ip, theta = true_theta, bins = 10)
# Fixed bin width
plot_empirical_icc(resp, 3, ip = ip, theta = true_theta, binwidth = .2)
# Plot GRM item's ICC
plot_empirical_icc(resp, "Item_4", ip = ip, theta = true_theta)
plot_empirical_icc(resp, "Item_4", ip = ip, theta = true_theta, binwidth = .2)