| est_ability {irt} | R Documentation |
Estimate Examinee Ability
Description
This function estimates examinee ability using different methods, including Owen's Bayesian estimation, Maximum Likelihood estimation, Maximum-a-Posteriori and Expected-a-Posteriori.
Usage
est_ability(
resp,
ip = NULL,
method = c("eap", "ml", "map", "bm", "owen", "sum_score"),
...,
prior_dist = c("norm", "unif", "lnorm", "gamma", "t", "cauchy"),
prior_pars = c(0, 1),
theta_range = c(-5, 5),
number_of_quads = 41,
tol = 1e-06,
output_type = c("list", "data.frame", "tibble")
)
Arguments
resp |
A |
ip |
An |
method |
The method used for ability estimation. The default is
Available methods:
|
... |
Additional arguments passed to specific methods. |
prior_dist |
The shape of the prior distribution. Available options are:
The default value is |
prior_pars |
Parameters of the prior distribution. Default value is
If method is |
theta_range |
The limits of the ability estimation scale. The estimation
result will be bounded within this interval. Default is |
number_of_quads |
Number of quadratures. The default value is 41. As this number increases, the precision of the estimate will also increase. |
tol |
The precision level of ability estimate. The final ability
estimates will be rounded to remove precision smaller than the |
output_type |
A string specifying the output type of the function.
Default is
|
Value
est The estimated examinee abilities. If the response vector
for a subject contains all NAs, then est will be NA to
differentiate from cases where all answers are incorrect.
se The standard errors of the ability estimates. For
"sum_score" method, all standard errors will be NA. For
Bayesian methods (like EAP, MAP or Owen's), this value is the square root
of the posterior variance.
Author(s)
Emre Gonulates
References
Owen, R. J. (1975). A Bayesian sequential procedure for quantal response in the context of adaptive mental testing. Journal of the American Statistical Association, 70(350), 351-356.
Vale, C. D., & Weiss, D. J. (1977). A Rapid Item-Search Procedure for Bayesian Adaptive Testing. Research Report 77-4. Minneapolis, MN.
Examples
ip <- generate_ip(n = 7)
resp <- sim_resp(ip, theta = rnorm(3))
### EAP estimation ###
est_ability(resp, ip)
est_ability(resp, ip, number_of_quads = 81)
# The default prior_dist is 'norm'. prior_pars = c(mean, sd)
est_ability(resp, ip, prior_pars = c(0, 3))
# prior_pars = c(min, max)
est_ability(resp, ip, prior_dist = 'unif', prior_pars = c(-3, 3))
# prior_pars = c(df)
est_ability(resp, ip, prior_dist = 't', prior_pars = 3)
# prior_pars = c(location, scale)
est_ability(resp, ip, prior_dist = 'cauchy', prior_pars = c(0, 1))
### MAP estimation (Bayes Modal estimation) ###
est_ability(resp, ip, method = "map")
# The default prior_dist is 'norm'. prior_pars = c(mean, sd)
est_ability(resp, ip, method = "map", prior_pars = c(0, 2))
### Maximum Likelihood estimation ###
est_ability(resp, ip, method = 'ml')
est_ability(resp, ip, method = 'ml', tol = 1e-8)
est_ability(resp = rep(1, length(ip)), ip, method = 'ml')
est_ability(resp = rep(1, length(ip)), ip, method = 'ml',
theta_range = c(-3, 3))
### Owen's Bayesian ability estimation ###
est_ability(resp, ip, method = 'owen')
est_ability(resp, ip, method = 'owen', prior_pars = c(0, 3))