ipsecr.fit {ipsecr} | R Documentation |
Spatially Explicit Capture–Recapture by Inverse Prediction
Description
Estimate population density by simulation and inverse prediction (Efford 2004; Efford, Dawson & Robbins 2004). A restricted range of SECR models may be fitted.
Usage
ipsecr.fit(capthist, proxyfn = proxy.ms, model = list(D ~ 1, g0 ~ 1, sigma ~ 1),
mask = NULL, buffer = 100, detectfn = "HN", binomN = NULL, start = NULL,
link = list(), fixed = list(), timecov = NULL, sessioncov = NULL,
details = list(), verify = TRUE, verbose = TRUE, ncores = NULL,
seed = NULL, ...)
Arguments
capthist |
secr capthist object including capture data and detector (trap) layout |
proxyfn |
function to compute proxy from capthist for each coefficient (beta parameter) |
model |
list with optional components each symbolically defining a linear
predictor for one real parameter using |
mask |
|
buffer |
scalar mask buffer radius in metres if |
detectfn |
integer code or character string for shape of detection function 0 = halfnormal, 1 = hazard rate etc. – see detectfn |
binomN |
integer code for distribution of counts (see Details) |
start |
vector of initial values for beta parameters, or |
link |
list with optional components corresponding to ‘real’ parameters (e.g., ‘D’, ‘g0’, ‘sigma’), each a character string in {"log", "logit", "identity", "sin"} for the link function of one real parameter |
fixed |
list with optional components corresponding to real parameters giving the scalar value to which the parameter is to be fixed |
timecov |
optional dataframe of values of time (occasion-specific) covariate(s). NOT USED |
sessioncov |
optional dataframe of values of session-specific covariate(s) |
details |
list of additional settings, to control estimation (see Details) |
verify |
logical, if TRUE the input data are checked with |
verbose |
logical, if TRUE then messages are output during execution |
ncores |
integer number of cores to use for parallel processing |
seed |
either NULL or an integer that will be used in a call to |
... |
other arguments passed to proxy function |
Details
The vignette should be consulted for a full exposition.
Parallel computation
ncores
determines the number of worker processes in a cluster created by makeCluster
(default type "FORK" on Unix platforms, otherwise "PSOCK"). If ncores = NULL
this defaults to the value from setNumThreads
. Simulations are distributed over worker processes using parRapply
. There are substantial overheads in running multiple processes: using too many will slow down fitting. With PSOCK clusters (i.e. on Windows) fitting is very often fastest with ncores = 1.
The ‘details’ argument
details
is used for various specialized settings listed below. These are
also described separately - see details
.
Name | Default | Description |
boxsize1 | 0.2 | scalar or vector of length np for size of design |
boxsize2 | 0.05 | as for boxsize1 ; used from second box onwards |
boxtype | 'absolute' | `absolute' or `relative' |
centre | 3 | number of centre points in simulation design |
dev.max | 0.002 | tolerance for precision of points in predictor space |
var.nsim | 2000 | number of additional simulations to estimate variance-covariance matrix |
keep.sim | FALSE | if true then the variance simulations are saved |
min.nsim | 20 | minimum number of simulations per point |
max.nsim | 200 | maximum number of simulations per point |
min.nbox | 2 | minimum number of attempts to `frame' solution |
max.nbox | 5 | maximum number of attempts to `frame' solution |
max.ntries | 2 | maximum number of attempts at each simulation |
distribution | `poisson' | `poisson', `binomial' or `even' |
binomN | 0 | integer code for distribution of counts (unused) |
ignorenontarget | FALSE | override nontarget attribute of capthist |
ignoreusage | FALSE | override usage in traps object of capthist |
debug | FALSE | stop at arbitrary points in execution (varies) |
savecall | TRUE | optionally suppress saving of call |
newdetector | NULL | detector type that overrides detector(traps(capthist)) |
contrasts | NULL | coding of factor predictors |
popmethod | `internal' | `internal' or `sim.popn' or a user-provided function |
CHmethod | `internal' | `internal' or `sim.capthist' or a user-provided function |
factorial | `full' | `full' or `fractional' design |
FrF2args | NULL | arguments for FrF2 when factorial = 'fractional' |
extraparam | NULL | list of starting values for extra parameters (see vignette) |
forkonunix | TRUE | logical choice between FORK and PSOCK cluster types (not Windows) |
Value
An object of class 'ipsecr', a list comprising:
call |
the function call (if details$savecall) |
capthist |
input |
proxyfn |
input |
model |
input |
mask |
input |
detectfn |
input |
start |
input |
link |
input |
fixed |
input |
timecov |
input |
sessioncov |
input |
details |
input |
designD |
list of design data for density |
trapdesigndata |
list of design data for trap-specific models |
parindx |
mapping of coefficients (beta parameters) to real parameters |
vars |
names of covariates in model |
betanames |
names of coefficients |
realnames |
names of 'real' parameters |
code |
integer completion code: 1 successful, 2 target not within final box, 3 exceeded maximum simulations |
beta |
estimates of coefficients on link scale |
beta.vcov |
variance-covariance matrix of estimates |
designbeta |
vertices of final box (design points) |
sim.lm |
last lm model fit |
ip.nsim |
total number of simulations |
var.nsim.OK |
number of successful variance simulations |
simulations |
optional simulation output (see details$keep.sim) |
parameters |
optional simulation input (see details$keep.sim) |
variance.bootstrap |
dataframe summarising simulations for variance estimation |
version |
package version |
starttime |
time execution started |
proctime |
processor time (seconds) |
seed |
RNG state |
(The order and composition of the output list may change).
References
Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.
Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.
See Also
proxy.ms
,
predict.ipsecr
,
summary.ipsecr
Examples
ipsecrdemo <- ipsecr.fit(captdata, ncores = 1, buffer = 100, detectfn = 14, seed = 1237)