lq {ioanalysis} | R Documentation |
Simple Location Quotient Updating
Description
Uses simple linear quotient technique to update the matrix of technical input coefficients (A
)
Usage
lq(io)
Arguments
io |
An |
Details
Uses the simple linear quotient technique as follows:
lq_i = \frac{X_i^r / X^r}{X_i^n / X^n}
where X^n
is the total production, X^r
is the total production for region r, X^r_i
is the production for region r sector i, and X^n_i
is the total production for the ith sector.
Then lq is converted such that if lq_i > 1
, then lq_i = 1
. Then lq is converted into a diagonal matrix of values less than or equal to 1, which gives us our final results
\hat{A} = A lq
Value
Produces the forecast of the matrix of technical input coefficients (A
) using the Slq technique.
Author(s)
John J. P. Wade
References
Blair, P.D. and Miller, R.E. (2009). "Input-Output Analysis: Foundations and Extensions". Cambridge University Press
Nazara, Suahasil & Guo, Dong & Hewings, Geoffrey J.D., & Dridi, Chokri, 2003. "PyIO. Input-Output Analysis with Python". REAL Discussion Paper 03-t-23. University of Illinois at Urbana-Champaign. (http://www.real.illinois.edu/d-paper/03/03-t-23.pdf)
Examples
data(toy.IO)
class(toy.IO)
Anew <- lq(toy.IO)