heatmap.io {ioanalysis} | R Documentation |
Heatmap Visualization
Description
A visualization tool for matrices belonging to an input-output system.
Usage
heatmap.io(obj, RS_label = NULL, regions_x = 'all', sectors_x = 'all',
regions_y = 'all', sectors_y = 'all',
ES_x = NULL, ES_y = NULL, FUN = NULL, low = NULL, high = NULL,
min = NA, max = NA)
Arguments
obj |
The object you wish to create a heat map for that corresponds to the RS_label |
RS_label |
The RS_label located in an |
regions_x |
The regions you wish to plot on the x-axis. This can either be the numerical order the regions occur or the name of the regions. The default is |
sectors_x |
The sectors you wish to plot on the x-axis. This can either be the numerical order the sectors occur or the name of the sectors. The default is |
regions_y |
The regions you wish to plot on the y-axis. This can either be the numerical order the regions occur or the name of the regions. The default is |
sectors_y |
The sectors you wish to plot on the y-axis. This can either be the numerical order the sectors occur or the name of the sectors. The default is |
ES_x |
Instead of specifying regions and sectors individually, you can use an |
ES_y |
See ES_x |
FUN |
The transformation of the elements in |
low |
The color of the low values. Default is |
high |
The color of the high values. Default is |
min |
The minimum value for the color legend. Default of NA == min(obj). Both min and max must be provided to change default. |
max |
The maximum value for the color legend. Default of NA == max(obj). Both min and max must be provided to change default. |
Details
heatmap.io
uses ggplot2::geom_tiles() to create the visualization of the object.
Note
The coloring follows the temperatures of stars!
Author(s)
John J. P. Wade
Examples
data(toy.IO)
class(toy.IO)
RS_label = toy.IO$RS_label
obj = toy.IO$L
heatmap.io(obj, RS_label, FUN = log, max = 3)
cuberoot = function(x){x^(1/3)}
heatmap.io(obj, RS_label, FUN = cuberoot)
# Total field of influence
fit = f.influence.total(toy.IO)
heatmap.io(fit, RS_label, sectors_x = c(1,3,4,5), regions_y = c(2), sectors = 1:3)
data(toy.ES)
ES2 = matrix(c(1,5,6,8,9))
class(ES2) = 'EasySelect'
heatmap.io(fit, RS_label, ES_x = toy.ES, ES_y = ES2,
low = '#00fcef', high = 'blueviolet')