plot.invacost.costsummary {invacost} | R Documentation |
Plot raw cumulated cost of invasive species over different periods of time
Description
This function provides different plotting methods for the raw average annual cost of invasive species over different periods of time
Usage
## S3 method for class 'invacost.costsummary'
plot(
x,
plot.breaks = 10^(-15:15),
plot.type = "points",
average.annual.values = TRUE,
cost.transf = "log10",
graphical.parameters = NULL,
...
)
Arguments
x |
The output object from |
plot.breaks |
a vector of numeric values indicating the plot breaks for the Y axis (cost values) |
plot.type |
|
average.annual.values |
if |
cost.transf |
Type of transformation you want to apply on cost values.
Specify |
graphical.parameters |
set this to |
... |
additional arguments, none implemented for now |
References
https://github.com/Farewe/invacost
Leroy Boris, Kramer Andrew M, Vaissière Anne-Charlotte, Kourantidou Melina, Courchamp Franck & Diagne Christophe (2022). Analysing economic costs of invasive alien species with the invacost R package. Methods in Ecology and Evolution. doi:10.1111/2041-210X.13929
Examples
data(invacost)
### Cleaning steps
# Eliminating data with no information on starting and ending years
invacost <- invacost[-which(is.na(invacost$Probable_starting_year_adjusted)), ]
invacost <- invacost[-which(is.na(invacost$Probable_ending_year_adjusted)), ]
# Keeping only observed and reliable costs
invacost <- invacost[invacost$Implementation == "Observed", ]
invacost <- invacost[which(invacost$Method_reliability == "High"), ]
# Eliminating data with no usable cost value
invacost <- invacost[-which(is.na(invacost$Cost_estimate_per_year_2017_USD_exchange_rate)), ]
### Expansion
db.over.time <- expandYearlyCosts(invacost,
startcolumn = "Probable_starting_year_adjusted",
endcolumn = "Probable_ending_year_adjusted")
### Analysis
res <- summarizeCosts(db.over.time,
minimum.year = 1970,
maximum.year = 2020)
### Visualisation
plot(res)
plot(res, plot.type = "bars")