NodeGeneralCorrelation {intensitynet} | R Documentation |
Calculate dependence statistics on the network
Description
It allows to compute different dependence statistics on the network for the given vector and for neighborhoods of distinct order. Such statistics are; correlation, covariance, Moran’s I and Geary’s C.
Usage
NodeGeneralCorrelation(
obj,
dep_type,
lag_max,
intensity,
partial_neighborhood = TRUE
)
## S3 method for class 'intensitynet'
NodeGeneralCorrelation(
obj,
dep_type = c("correlation", "covariance", "moran", "geary"),
lag_max,
intensity,
partial_neighborhood = TRUE
)
Arguments
obj |
intensitynet object |
dep_type |
'correlation', 'covariance', moran', 'geary'. The type of dependence statistic to be computed. |
lag_max |
Maximum geodesic lag at which to compute dependence |
intensity |
Vector containing the values to calculate the specified dependency in the network. Usually the node mean intensities. |
partial_neighborhood |
use partial neighborhood (TRUE) or cumulative (FALSE). TRUE by default |
Value
A vector containing the dependence statistics (ascending from order 0).
Examples
data("und_intnet_chicago")
g <- und_intnet_chicago$graph
gen_corr <- NodeGeneralCorrelation(und_intnet_chicago, dep_type = 'correlation', lag_max = 2,
intensity = igraph::vertex_attr(g)$intensity)
[Package intensitynet version 1.4.0 Index]