network_sift {inferCSN} | R Documentation |
network_sift
Description
network_sift
Usage
network_sift(
network_table,
matrix = NULL,
meta_data = NULL,
pseudotime_column = NULL,
method = c("entropy", "max"),
entropy_method = c("Shannon", "Renyi"),
effective_entropy = FALSE,
shuffles = 100,
entropy_nboot = 300,
history_length = 1,
entropy_p_value = 0.05,
cores = 1,
verbose = TRUE
)
Arguments
network_table |
network_table |
matrix |
The expression matrix. |
meta_data |
The meta data for cells or samples. |
pseudotime_column |
The column of pseudotime. |
method |
method The method used for filter edges. Could be choose |
entropy_method |
If setting |
effective_entropy |
Logical value, using effective entropy to filter weights or not. |
shuffles |
The number of shuffles used to calculate the effective transfer entropy. Default is |
entropy_nboot |
entropy_nboot |
history_length |
history_length |
entropy_p_value |
P value. |
cores |
Number of CPU cores used. Setting to parallelize the computation with |
verbose |
Print detailed information. |
Value
Filtered network table
Examples
data("example_matrix")
data("example_ground_truth")
network_table <- inferCSN(example_matrix)
network_table_filtered <- network_sift(network_table)
data("example_meta_data")
network_table_filtered_entropy <- network_sift(
network_table,
matrix = example_matrix,
meta_data = example_meta_data,
pseudotime_column = "pseudotime",
history_length = 2,
shuffles = 0,
entropy_nboot = 0
)
network.heatmap(
example_ground_truth[, 1:3],
heatmap_title = "Ground truth",
show_names = TRUE,
rect_color = "gray70"
)
network.heatmap(
network_table,
heatmap_title = "Raw",
show_names = TRUE,
rect_color = "gray70"
)
network.heatmap(
network_table_filtered,
heatmap_title = "Filtered",
show_names = TRUE,
rect_color = "gray70"
)
network.heatmap(
network_table_filtered_entropy,
heatmap_title = "Filtered by entropy",
show_names = TRUE,
rect_color = "gray70"
)
auc.calculate(
network_table,
example_ground_truth,
plot = TRUE
)
auc.calculate(
network_table_filtered,
example_ground_truth,
plot = TRUE
)
auc.calculate(
network_table_filtered_entropy,
example_ground_truth,
plot = TRUE
)
[Package inferCSN version 1.0.5 Index]