impute.RF {imp4p} | R Documentation |
Imputing missing values using Random Forest.
Description
Imputing missing values using the algorithm proposed by Stekhoven and Buehlmann (2012). The function is based on the missForest function of the R package missForest.
Usage
impute.RF(tab, conditions,
maxiter = 10, ntree = 100, variablewise = FALSE,
decreasing = FALSE, verbose = FALSE,
mtry = floor(sqrt(ncol(tab))), replace = TRUE,
classwt = NULL, cutoff = NULL, strata = NULL,
sampsize = NULL, nodesize = NULL, maxnodes = NULL,
xtrue = NA, parallelize = c('no', 'variables', 'forests'))
Arguments
tab |
A data matrix containing numeric and missing values. Each column of this matrix is assumed to correspond to an experimental sample, and each row to an identified peptide. |
conditions |
A vector of factors indicating the biological condition to which each sample belongs. |
maxiter |
parameter of the |
ntree |
parameter of the |
variablewise |
parameter of the |
decreasing |
parameter of the |
verbose |
parameter of the |
mtry |
parameter of the |
replace |
parameter of the |
classwt |
parameter of the |
cutoff |
parameter of the |
strata |
parameter of the |
sampsize |
parameter of the |
nodesize |
parameter of the |
maxnodes |
parameter of the |
xtrue |
parameter of the |
parallelize |
parameter of the |
Details
See Stekhoven and Buehlmann (2012) for the theory. It is built from functions proposed in the R package missForest.
Value
The input matrix tab
with imputed values instead of missing values.
Author(s)
Quentin Giai Gianetto <quentin2g@yahoo.fr>
References
Stekhoven, D.J. and Buehlmann, P. (2012), 'MissForest - nonparametric missing value imputation for mixed-type data', Bioinformatics, 28(1) 2012, 112-118, doi: 10.1093/bioinformatics/btr597
Examples
#Simulating data
res.sim=sim.data(nb.pept=2000,nb.miss=600,nb.cond=2);
#Imputation of missing values with Random Forest
dat.rf=impute.RF(tab=res.sim$dat.obs,conditions=res.sim$condition);