imp4p-package |
Introduction to the IMP4P package |
estim.bound |
Estimation of lower and upper bounds for missing values. |
estim.mix |
Estimation of a mixture model of MCAR and MNAR values in each column of a data matrix. |
fast_apply_nb_na |
Function similar to the function 'apply(X,dim,function(x)sum(is.na(x)))'. |
fast_apply_nb_not_na |
Function similar to the function 'apply(X,dim,function(x)sum(!is.na(x)))'. |
fast_apply_sd_na_rm_T |
Function similar to the function 'apply(X,dim,sd,na.rm=TRUE)'. |
fast_apply_sum_na_rm_T |
Function similar to the function 'apply(X,dim,sum,na.rm=TRUE)'. |
fast_sim |
Function to compute similarity measures between a vector and each row of a matrix. |
gen.cond |
Function allowing to create a vector indicating the membership of each sample to a condition. |
imp4p |
Introduction to the IMP4P package |
impute.igcda |
Imputing missing values by assuming that the distribution of complete values is Gaussian in each column of an input matrix. This algorithm is named "Imputation under a Gaussian Complete Data Assumption" (IGCDA). |
impute.mi |
Imputation of data sets containing peptide intensities with a multiple imputation strategy. |
impute.mix |
Imputation using a decision rule under an assumption of a mixture of MCAR and MNAR values. |
impute.mle |
Imputing missing values using a maximum likelihood estimation (MLE). |
impute.pa |
Imputation of peptides having no value in a biological condition (present in a condition / absent in another). |
impute.PCA |
Imputing missing values using Principal Components Analysis. |
impute.rand |
Imputation of peptides with a random value. |
impute.RF |
Imputing missing values using Random Forest. |
impute.slsa |
Imputing missing values using an adaptation of the LSimpute algorithm (Bo et al. (2004)) to experimental designs. This algorithm is named "Structured Least Squares Algorithm" (SLSA). |
mi.mix |
Multiple imputation from a matrix of probabilities of being MCAR for each missing value. |
miss.mcar.process |
Estimating the MCAR mechanism in a sample. |
miss.total.process |
Estimating the missing data mechanism in a sample. |
pi.mcar.karpievitch |
Estimating the proportion of MCAR values in biological conditions using the method of Karpievitch (2009). |
pi.mcar.logit |
Estimating the proportion of MCAR values in a sample using a logit model. |
pi.mcar.probit |
Estimating the proportion of MCAR values in a sample using a probit model. |
prob.mcar |
Estimation of a vector of probabilities that missing values are MCAR. |
prob.mcar.tab |
Estimation of a matrix of probabilities that missing values are MCAR. |
sim.data |
Simulation of data sets by controlling the proportion of MCAR values and the distribution of MNAR values. |
translatedRandomBeta |
Function to generated values following a translated Beta distribution |