varImpPlot.icrf {icrf} | R Documentation |
'Variable Importance Plot'
Description
'Dotchart of variable importance as measured by' icrf
.
(Quoted statements are from
randomForest
by Liaw and Wiener unless otherwise mentioned.)
Usage
varImpPlot(x, ...)
## S3 method for class 'icrf'
varImpPlot(
x,
sort = TRUE,
n.var = min(30, nrow(x$importance)),
type = NULL,
forest = NULL,
main = deparse(substitute(x)),
...
)
Arguments
x |
'an object of class' |
... |
'Other graphical parameters to be passed on to |
sort |
'Should the variables be sorted in decreasing order of importance?' |
n.var |
'How many variables to show? (Ignored if sort=FALSE.)' |
type |
'arguments to be passed on to importance' |
forest |
The forest for which the importance is plotted. If |
main |
'plot title' |
Value
'Invisibly, the importance of the variables that were plotted.'
Author(s)
Hunyong Cho, Nicholas P. Jewell, and Michael R. Kosorok.
References
Cho H., Jewell N. J., and Kosorok M. R. (2020+). "Interval censored recursive forests"
Examples
# rats data example.
# Note that this is a toy example. Use a larger ntree and nfold in practice.
data(rat2)
set.seed(1)
rats.icrf <-
icrf(~ dose.lvl + weight + male + cage.no, data = rat2,
data.type = "currentstatus", currentstatus.label = c("survtime", "tumor"),
returnBest = TRUE, ntree=10, nfold=3)
varImpPlot(rats.icrf)
[Package icrf version 2.0.2 Index]