loglik.g {iWeigReg} | R Documentation |
The calibrated objective function ("log-likelihood")
Description
This function computes the objective function, its gradient and its Hessian matrix for the calibrated likelihood estimator in Tan (2010), Biometrika.
Arguments
lam |
A vector of parameters ("lambda"). |
tr |
A vector of non-missing or treatment indicators. |
h |
A constraint matrix. |
pr |
A vector of fitted propensity scores. |
g |
A matrix of calibration variables. |
Value
value |
The value of the objective function. |
gradient |
The gradient of the objective function. |
hessian |
The Hessian matrix of the objective function. |
References
Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of the American Statistical Association, 101, 1619-1637.
Tan, Z. (2010) "Bounded, efficient and doubly robust estimation with inverse weighting," Biometrika, 97, 661-682.
Examples
data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)
#logistic propensity score model, correct
ppi.glm <- glm(tr~z, family=binomial(link=logit))
p <- ppi.glm$fitted
#outcome regression model, misspecified
y.fam <- gaussian(link=identity)
eta1.glm <- glm(y ~ x, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))
eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")
#
g1 <- cbind(1,eta1.hat)
h <- cbind(p, (1-p)*g1)
loglik.g(lam=rep(0,dim(g1)[2]), tr=tr, h=h, pr=p, g=g1)
[Package iWeigReg version 1.1 Index]