histw {iWeigReg} | R Documentation |
Weighted histogram
Description
This function plots a weighted histogram.
Usage
histw(x, w, xaxis, xmin, xmax, ymax,
bar=TRUE, add=FALSE, col="black", dens=TRUE)
Arguments
x |
A data vector. |
w |
A weight vector, which will be rescaled to sum up to one. |
xaxis |
A vector of cut points. |
xmin |
The minimum of |
xmax |
The maximum of |
ymax |
The maximum of |
bar |
bar plot (if |
add |
if |
col |
color of lines. |
dens |
if |
References
Tan, Z. (2006) "A distributional approach for causal inference using propensity scores," Journal of the American Statistical Association, 101, 1619-1637.
Examples
data(KS.data)
attach(KS.data)
z=cbind(z1,z2,z3,z4)
x=cbind(x1,x2,x3,x4)
#logistic propensity score model, misspecified
ppi.glm <- glm(tr~x, family=binomial(link=logit))
ppi.hat <- ppi.glm$fitted
#outcome regression model, correct
y.fam <- gaussian(link=identity)
eta1.glm <- glm(y ~ z, subset=tr==1,
family=y.fam, control=glm.control(maxit=1000))
eta1.hat <- predict.glm(eta1.glm,
newdata=data.frame(x=x), type="response")
eta0.glm <- glm(y ~ z, subset=tr==0,
family=y.fam, control=glm.control(maxit=1000))
eta0.hat <- predict.glm(eta0.glm,
newdata=data.frame(x=x), type="response")
#causal inference
out.clik <- ate.clik(y, tr, ppi.hat,
g0=cbind(1,eta0.hat),g1=cbind(1,eta1.hat))
#balance checking
gp1 <- tr==1
gp0 <- tr==0
par(mfrow=c(2,3))
look <- z1
histw(look[gp1], rep(1,sum(gp1)), xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8)
histw(look[gp0], rep(1,sum(gp0)), xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")
histw(look[gp1], 1/ppi.hat[gp1], xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8)
histw(look[gp0], 1/(1-ppi.hat[gp0]), xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")
histw(look[gp1], 1/out.clik$w[gp1,1], xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8)
histw(look[gp0], 1/out.clik$w[gp0,2], xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")
look <- z2
histw(look[gp1], rep(1,sum(gp1)), xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8)
histw(look[gp0], rep(1,sum(gp0)), xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")
histw(look[gp1], 1/ppi.hat[gp1], xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8)
histw(look[gp0], 1/(1-ppi.hat[gp0]), xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")
histw(look[gp1], 1/out.clik$w[gp1,1], xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8)
histw(look[gp0], 1/out.clik$w[gp0,2], xaxis=seq(-3.5,3.5,.25),
xmin=-3.5, xmax=3.5, ymax=.8, bar=0, add=TRUE, col="red")
[Package iWeigReg version 1.1 Index]