create.autoencoder.irf.matrix {iSubGen} | R Documentation |
Create matrix of independent reduced features
Description
Create matrix of independent reduced features using autoencoders
Usage
create.autoencoder.irf.matrix(data.types, data.matrices,
autoencoders, filter.to.common.patients = FALSE,
patients.to.return = NULL)
Arguments
data.types |
vector, where each element is a data type ID matching the names in data.matrices and dist.metrics |
data.matrices |
list, where each element is a matrix with features as rows and patients as columns |
autoencoders |
list, where each element is an autoencoder corresponding to each data type. Can be either an keras autoencoder object or the file where the autoencoder was saved. |
filter.to.common.patients |
logical, where TRUE indicates to filter out patients that don't have all data types. |
patients.to.return |
vector of patients to return correlations for. If NULL all patients/columns will be used. |
Value
matrix where rows are patients and columns are pairs of data types
Author(s)
Natalie Fox
Examples
## Not run:
# Load three data types and create an autoencder for each
example.molecular.data.dir <- paste0(path.package('iSubGen'),'/exdata/');
molecular.data <- list();
ae.result <- list();
for(i in c('cna','snv','methy')) {
molecular.data[[i]] <- load.molecular.aberration.data(
paste0(example.molecular.data.dir,i,'_profiles.txt'),
patients = c(paste0('EP00',1:9), paste0('EP0',10:30))
);
ae.result[[i]] <- create.autoencoder(
data.type = i,
data.matrix = molecular.data[[i]],
encoder.layers.node.nums = c(10,2)
)$autoencoder;
}
# Create a matrix of the bottleneck layers
irf.matrix <- create.autoencoder.irf.matrix(
data.types = names(molecular.data),
data.matrices = molecular.data,
autoencoders = ae.result
);
## End(Not run)
[Package iSubGen version 1.0.1 Index]