honda2023.qspr {httk} | R Documentation |
Predicted Caco-2 Apical-Basal Permeabilities
Description
Honda et al. (2023) describes the construction of a machine-learning quantitative structure-property relationship (QSPR )model for in vitro Caco-2 membrane permeabilites. That model was used to make chemical-specific predictions provided in this table.
Usage
honda2023.qspr
Format
An object of class data.frame
with 14033 rows and 5 columns.
Details
Column Name | Description | Units |
DTXSID | EPA's DSSTox Structure ID (https://comptox.epa.gov/dashboard) | |
Pab.Class.Pred | Predicted Pab rate of slow (1), moderate (2), or fast (3) | |
Pab.Pred.AD | Whether (1) or not (0) the chemical is anticipated to be withing the QSPR domain of applicability | |
CAS | Chemical Abstracts Service Registry Number | |
Pab.Quant.Pred | Median and 95-percent interval for values within the predicted class's training data moderate (2), or fast (3) | 10^-6 cm/s |
References
Honda G, Kenyon EM, Davidson-Fritz SE, Dinallo R, El-Masri H, Korel-Bexell E, Li L, Paul-Friedman K, Pearce R, Sayre R, Strock C, Thomas R, Wetmore BA, Wambaugh JF (2023). “Impact of Gut Permeability on Estimation of Oral Bioavailability for Chemicals in Commerce and the Environment.” Unpublished.
See Also
[Package httk version 2.3.1 Index]