calcKFoldError {hpiR} | R Documentation |
Calculate index error with FKold (out of sample)
Description
Use a KFold (out of sample) approach to estimate index accuracy
Usage
calcKFoldError(hpi_obj, pred_df, k = 10, seed = 1, smooth = FALSE,
...)
Arguments
hpi_obj |
HPI object of class 'hpi' |
pred_df |
Data.frame of sales to be used for assessing predictive quality of index |
k |
default=10; Number of folds to apply to holdout process |
seed |
default=1; Random seed generator to control the folding process |
smooth |
default = FALSE; Calculate on the smoothed index |
... |
Additional Arguments |
Value
object of class 'hpiaccuracy' inheriting from class 'data.frame' containing the following fields:
- pair_id
Unique Pair ID
- price
Transaction Price
- pred_price
Predicted price
- error
(Prediction - Actual) / Actual
- log_error
log(prediction) - log(actual)
- pred_period
Period of the prediction
Examples
# Load data
data(ex_sales)
# Create index with raw transaction data
rt_index <- rtIndex(trans_df = ex_sales,
periodicity = 'monthly',
min_date = '2010-06-01',
max_date = '2015-11-30',
adj_type = 'clip',
date = 'sale_date',
price = 'sale_price',
trans_id = 'sale_id',
prop_id = 'pinx',
estimator = 'robust',
log_dep = TRUE,
trim_model = TRUE,
max_period = 48,
smooth = FALSE)
# Create prediction data
rt_data <- rtCreateTrans(trans_df = ex_sales,
prop_id = 'pinx',
trans_id = 'sale_id',
price = 'sale_price',
periodicity = 'monthly',
date = 'sale_date')
# Calc Accuracy
kf_accr <- calcKFoldError(hpi_obj = rt_index,
pred_df = rt_data,
k = 10,
seed = 123,
smooth = FALSE)
[Package hpiR version 0.3.2 Index]