calcInSampleError {hpiR} | R Documentation |
Calculate index errors in sample
Description
Estimate the predictive error of an index via an in-sample approach.
Usage
calcInSampleError(pred_df, index, ...)
Arguments
pred_df |
Set of sales against which to test predictions |
index |
Index (of class 'ts') to be tested for accuracy |
... |
Additional Arguments |
Value
object of class 'hpiaccuracy' inheriting from class 'data.frame' containing the following fields:
- pair_id
Uniq Pair ID number
- price
Transaction Price
- pred_price
Predicted price
- error
(Prediction - Actual) / Actual
- log_error
log(prediction) - log(actual)
- pred_period
Period of the prediction
Further Details
In addition to being a stand-alone function, it is also used by 'calcForecastError' and 'calcKFoldError“
Examples
# Load example data
data(ex_sales)
# Create index with raw transaction data
rt_index <- rtIndex(trans_df = ex_sales,
periodicity = 'monthly',
min_date = '2010-06-01',
max_date = '2015-11-30',
adj_type = 'clip',
date = 'sale_date',
price = 'sale_price',
trans_id = 'sale_id',
prop_id = 'pinx',
estimator = 'robust',
log_dep = TRUE,
trim_model = TRUE,
max_period = 48,
smooth = FALSE)
# Calculate accuracy
in_accr <- calcInSampleError(pred_df = rt_index$data,
index = rt_index$index$value)
[Package hpiR version 0.3.2 Index]