solution.basis {hitandrun} | R Documentation |
Calculate the basis for the solution space of a system of linear equations
Description
Given a set of linear equality constraints, determine a translation and a basis for its solution space.
Usage
solution.basis(constr)
Arguments
constr |
Linear equality constraints |
Details
For a system of linear equations, Ax = b
, the solution space is given by
x = A^\dagger b + (I - A^\dagger A) y
where A^\dagger
is the Moore-Penrose pseudoinverse of A
.
The QR decomposition of I - A^\dagger A
enables us to determine the dimension of the solution space and derive a basis for that space.
Value
A list, consisting of
translate |
A point in the solution space |
basis |
A basis rooted in that point |
Author(s)
Gert van Valkenhoef
See Also
Examples
# A 3-dimensional original space
n <- 3
# x_1 + x_2 + x_3 = 1
eq.constr <- list(constr = t(rep(1, n)), dir = '=', rhs = 1)
basis <- solution.basis(eq.constr)
stopifnot(ncol(basis$basis) == 2) # Dimension reduced to 2
y <- rbind(rnorm(100, 0, 100), rnorm(100, 0, 100))
x <- basis$basis %*% y + basis$translate
stopifnot(all.equal(apply(x, 2, sum), rep(1, 100)))
# 2 x_2 = x_1; 2 x_3 = x_2
eq.constr <- mergeConstraints(
eq.constr,
list(constr = c(-1, 2, 0), dir = '=', rhs = 0),
list(constr = c(0, -1, 2), dir = '=', rhs = 0))
basis <- solution.basis(eq.constr)
stopifnot(ncol(basis$basis) == 0) # Dimension reduced to 0
stopifnot(all.equal(basis$translate, c(4/7, 2/7, 1/7)))
[Package hitandrun version 0.5-6 Index]