rq.stat {hettx} | R Documentation |
rq.stat
Description
rq.stat is the Kolmogorov-smirnov statistic via quantile regression with covariates without further adjustment.
rq.stat.cond.cov does Kolmogorov-smirnov statistic via quantile regression with covariates, with a conditional approach; see Koenker and Xiao (2002).
rq.stat.uncond.cov implements a Kolmogorov-smirnov statistic via quantile regression with covariates, unconditional approach; see Firpo (2007).
Usage
rq.stat(Y, Z, rq.pts)
rq.stat.cond.cov(Y, Z, X, rq.pts)
rq.stat.uncond.cov(Y, Z, X, rq.pts)
Arguments
Y |
Observed outcome vector |
Z |
Treatment assigment vector |
rq.pts |
Sequence of quantile points at which to evaluate the test. Default is seq(.1, .9, by = .1). Should not go beyond 0 and 1. |
X |
Additional pre-treatment covariates to adjust for in estimation, but not to interact with treatment. |
Details
Warning: This function supresses all warnings of the 'rq()' method call.
Warning: This function supresses all warnings of the 'rq()' method call.
Value
The value of the test.
Examples
df <- make.randomized.dat( 1000, gamma.vec=c(1,1,1,2), beta.vec=c(-1,-1,1,0) )
rq.stat(df$Yobs, df$Z)
df <- make.randomized.dat( 1000, gamma.vec=c(1,1,1,2), beta.vec=c(-1,-1,1,0) )
rq.stat.cond.cov(df$Yobs, df$Z, df$A)
df <- make.randomized.dat( 1000, gamma.vec=c(1,1,1,2), beta.vec=c(-1,-1,1,0) )
rq.stat.uncond.cov(df$Yobs, df$Z, df$A)