Fisherian and Neymanian Methods for Detecting and Measuring Treatment Effect Variation


[Up] [Top]

Documentation for package ‘hettx’ version 0.1.3

Help Pages

hettx-package Fisherian and Neymanian Methods for Detecting and Measuring Treatment Effect Variation
coef.RI.regression.result Extract coefficients of a fit RI regression model.
detect_idiosyncratic detect_idiosyncratic
estimate_systematic Calculate systematic effects model using LATE, ITT, or full potential outcomes.
get.p.value get p-value along with uncertainty on p-value
KS.stat KS.stat
make.linear.data Generate dataset according to a linear model.
make.quadradic.data Generate dataset according to a linear model.
make.randomized.compliance.dat Generate fake data with noncompliance.
make.randomized.dat Make fake data for simulations
make.skew.data Generate dataset according to a linear model.
Penn46_ascii Sample data set
plot.FRTCI.test plot.FRTCI.test
plot.RI.R2.result Make a plot of the treatment effect R2 estimates
R2 Estimate treatment variation R2
rq.stat rq.stat
rq.stat.cond.cov rq.stat
rq.stat.uncond.cov rq.stat
SE Extract the standard errors from a var-cov matrix.
SKS.pool.t SKS.pool.t
SKS.stat SKS.stat
SKS.stat.cov SKS.stat.cov.pool
SKS.stat.cov.pool SKS.stat.cov.pool
SKS.stat.cov.rq SKS.stat.cov.rq
SKS.stat.int.cov SKS.stat.int.cov.pool
SKS.stat.int.cov.pool SKS.stat.int.cov.pool
test.stat.info test.stat.info
ToyData Toy data set
variance.ratio.test Variance ratio test
vcov.RI.regression.result Get vcov() from object.
WSKS.t WSKS.t