update_model {heemod} | R Documentation |
Run Model on New Data
Description
Given a table of new parameter values with a new parameter set per line, runs iteratively Markov models over these sets.
Usage
## S3 method for class 'run_model'
update(object, newdata, ...)
## S3 method for class 'updated_model'
plot(
x,
type = c("simple", "difference", "counts", "ce", "values"),
result = c("cost", "effect", "icer"),
strategy = NULL,
...
)
Arguments
object |
The result of |
newdata |
A |
... |
Additional arguments passed to
|
x |
Updated model to plot. |
type |
Plot simple values or differences? |
result |
The the result to plot (see details). |
strategy |
A model index, character or numeric. |
Details
newdata
must be a data.frame
with the
following properties: the column names must be parameter
names used in define_parameters()
; and an
optional column .weights
can give the respective
weight of each row in the target population.
Weights are automatically scaled. If no weights are provided equal weights are used for each strata.
For the plotting function, the type
argument can
take the following values: "cost"
, "effect"
or "icer"
to plot the heterogeneity of the
respective values. Furthermore "ce"
and
"count"
can produce from the combined model plots
similar to those of run_model()
.
Value
A data.frame
with one row per model/value.
Warning
Histograms do not account for weights. On the other hand summary results do.
Examples
mod1 <-
define_strategy(
transition = define_transition(
.5, .5,
.1, .9
),
define_state(
cost = 543 + age * 5,
ly = 1
),
define_state(
cost = 432 + age,
ly = 1 * age / 100
)
)
mod2 <-
define_strategy(
transition = define_transition(
.5, .5,
.1, .9
),
define_state(
cost = 789 * age / 10,
ly = 1
),
define_state(
cost = 456 * age / 10,
ly = 1 * age / 200
)
)
res <- run_model(
mod1, mod2,
parameters = define_parameters(
age_init = 60,
age = age_init + model_time
),
init = 1:0,
cycles = 10,
cost = cost,
effect = ly
)
# generating table with new parameter sets
new_tab <- data.frame(
age_init = 40:45
)
# with run_model result
ndt <- update(res, newdata = new_tab)
summary(ndt)
# using weights
new_tab2 <- data.frame(
age_init = 40:45,
.weights = runif(6)
)
#'\dontrun{
#'ndt2 <- update(res, newdata = new_tab2)
#'
#'summary(ndt2)
#'}