orderFeatures {hddplot} | R Documentation |
Order features, based on their ability to discriminate
Description
For each row of data
, an F or (potentially) other
statistic is calculated, using the function FUN
, that measures
the extent to which this variable separates the data into groups. This
statistic is then used to order the rows.
Usage
orderFeatures(x, cl, subset = NULL, FUN = aovFbyrow, values =
FALSE)
Arguments
x |
Matrix; rows are features, and columns are observations ('samples') |
cl |
Factor that classifies columns into groups |
subset |
allows specification of a subset of the columns of |
FUN |
specifies the function used to measure separation between groups |
values |
if |
Value
Either (values=FALSE
) a vector that orders the rows,
or (values=TRUE
)
ord |
a vector that orders the rows |
stat |
ordered values of the statistic |
Author(s)
John Maindonald
Examples
mat <- matrix(rnorm(1000), ncol=20)
cl <- factor(rep(1:3, c(7,9,4)))
ord <- orderFeatures(mat, cl)
## The function is currently defined as
function(x, cl, subset=NULL, FUN=aovFbyrow, values=FALSE){
if(dim(x)[2]!=length(cl))stop(paste("Dimension 2 of x is",
dim(x)[2], "differs from the length of cl (=",
length(cl)))
## Ensure that cl is a factor & has no redundant levels
if(is.null(subset))
cl <- factor(cl)
else
cl <- factor(cl[subset])
if(is.null(subset))
stat <- FUN(x, cl)
else
stat <- FUN(x[, subset], cl)
ord <- order(-abs(stat))
if(!values)ord else(list(ord=ord, stat=stat[ord]))
}
[Package hddplot version 0.59-2 Index]