defectiveCVdisc {hddplot} | R Documentation |
defective accuracy assessments from linear discriminant calculations
Description
Determine cross-validated accuracy, for each of a number of features in a specified range, in each case with a set of features that have been selected using the total data. The "accuracy" assessment are provided only for comparative purposes
Usage
defectiveCVdisc(x, cl, nfold = NULL, FUN = aovFbyrow, nfeatures = 2, seed = 31,
funda = lda, foldids = NULL, subset = NULL, print.progress = TRUE)
Arguments
x |
Matrix; rows are features, and columns are observations ('samples') |
cl |
Factor that classifies columns into groups |
nfold |
Number of folds for the cross-validation. Optionally, a second number species the number of repeats of the cross-validation |
FUN |
function used to calculate a measure, for each row, of separation into groups |
nfeatures |
Specifies the different numbers of features (e.g., 1:10) that will be tried, to determine cross-validation accuracy in each instance |
seed |
This can be used to specify a starting value for the random number generator, in order to make calculations repeatable |
funda |
Function that will be used for discrimination. Currently
|
foldids |
Fold information, as output from |
subset |
Allows the use of a subset of the samples (observations) |
print.progress |
Set to |
Value
acc.resub |
resubstitution measure of 'accuracy' |
acc.sel1 |
'accuracy' from cross-validation, with the initially selected features |
Author(s)
John Maindonald
See Also
Examples
mat <- matrix(rnorm(1000), ncol=20)
cl <- factor(rep(1:3, c(7,9,4)))
badaccs <- defectiveCVdisc(mat, cl, nfold=c(3,1), nfeatures=1:5)
## Note the list elements acc.resub and acc.sel1
## The function is currently defined as
function(x, cl, nfold=NULL, FUN=aovFbyrow,
nfeatures=2, seed=31, funda=lda, foldids=NULL,
subset=NULL, print.progress=TRUE){
## Option to omit one or more points
if(!is.null(subset)) cl[!is.na(cl)][!subset] <- NA
if(any(is.na(cl))){x <- x[,!is.na(cl)]
cl <- cl[!is.na(cl)]
}
nobs <- dim(x)[2]
## Get fold information from foldids, if specified,
## else if nfold is not specified, use leave-one-out CV
if(!is.null(foldids))
nfold <- c(length(unique(foldids)), dim(foldids)[2])
if(is.null(nfold)&is.null(foldids))nfold <- sum(!is.na(cl))
else if(nfold[1]==nobs)foldids <- sample(1:nfold[1])
else foldids <- sapply(1:nfold[2], function(x)
divideUp(cl, nset=nfold[1]))
if(length(nfold)==1)nfold <- c(nfold,1)
cl <- factor(cl)
ngp <- length(levels(cl))
genes <- rownames(x)
if(is.null(genes)){
genes <- paste(1:dim(x)[1])
print("Input rows (features) are not named. Names")
print(paste(1,":", dim(x)[1], " will be assigned.", sep=""))
rownames(x) <- genes
}
require(MASS)
if(!is.null(seed))set.seed(seed)
Fcut <- NULL
maxgenes <- max(nfeatures)
stat <- FUN(x=x, cl)
Fcut <- list(F=sort(stat, decreasing=TRUE)[nfeatures],
df=c(ngp-1, nobs-ngp))
ord <- order(-abs(stat))[1:maxgenes]
genes.ord <- genes[ord]
selectonce.df <- data.frame(t(x[ord, , drop=FALSE]))
acc.resub <- acc.sel1 <- numeric(maxgenes)
if(nfold[1]==0)acc.sel1 <- NULL
for(ng in nfeatures){
resub.xda <- funda(cl~., data=selectonce.df[,1:ng,drop=FALSE])
hat.rsb <- predict(resub.xda)$class
tab.rsb <- table(hat.rsb, cl)
acc.resub[ng] <- sum(tab.rsb[row(tab.rsb)==col(tab.rsb)])/sum(tab.rsb)
if(nfold[1]==0)next
if(nfold[1]==nobs){
hat.sel1 <- funda(cl~., data=selectonce.df[,1:ng,drop=FALSE],
CV=TRUE)$class
tab.one <- table(hat.sel1, cl)
acc.sel1[ng] <- sum(tab.one[row(tab.one)==col(tab.one)])/sum(tab.one)
} else
{
hat <- cl
if(print.progress)cat(paste(ng,":",sep=""))
for(k in 1:nfold[2])
{
foldk <- foldids[,k]
ufold <- sort(unique(foldk))
for(i in ufold){
testset <- (1:nobs)[foldk==i]
trainset <- (1:nobs)[foldk!=i]
dfi <- selectonce.df[-testset, 1:ng, drop=FALSE]
newdfi <- selectonce.df[testset, 1:ng, drop=FALSE]
cli <- cl[-testset]
xy.xda <- funda(cli~., data=dfi)
subs <- match(colnames(dfi), rownames(df))
newpred.xda <- predict(xy.xda, newdata=newdfi, method="debiased")
hat[testset] <- newpred.xda$class
}
tabk <- table(hat,cl)
if(k==1)tab <- tabk else tab <- tab+tabk
}
acc.sel1[ng] <- sum(tab[row(tab)==col(tab)])/sum(tab)
}
}
if(print.progress)cat("\n")
invisible(list(acc.resub=acc.resub, acc.sel1=acc.sel1, genes=genes.ord))
}