cvscores {hddplot}R Documentation

For high-dimensional data with known groups, derive scores for plotting

Description

This is designed to used with the output from cvdisc. Test and training scores from successive cross-validation steps determine, via a principal components calculation, a low-dimensional global space onto which test scores are projected, in order to plot them.

Usage

cvscores(cvlist, nfeatures, ndisc = NULL, cl.other,
         x.other, keepcols = NULL, print.progress = TRUE)

Arguments

cvlist

Output object from cvdisc

nfeatures

Number of features to use

ndisc

Dimension of space in which scores will be formed, at most one less than the number of groups

cl.other

Classifies additional observations that are to be projected onto the same low-dimensional space

x.other

Matrix from which additional observations will be taken

keepcols

Number of sets of principal component scores to use in discriminant calculations and consequent evaluation of scores that will determine the low-dimensional global space

print.progress

Set to TRUE (default) for printing out, as calculations proceed, the number of the current fold

Value

scores

Scores that can be plotted

cl

Factor that was used to classify observations into groups

other.scores

Other scores, if any, for plotting

cl.other

Factor that was used to classify the 'other' data into groups

nfeatures

Number of features used

Note

The methodology used here has developed beyond that described in Maindonald and Burden (2005)

Author(s)

John Maindonald

References

J. H. Maindonald and C. J. Burden, 2005. Selection bias in plots of microarray or other data that have been sampled from a high-dimensional space. In R. May and A.J. Roberts, eds., Proceedings of 12th Computational Techniques and Applications Conference CTAC-2004, volume 46, pp. C59–C74.

https://journal.austms.org.au/V46/CTAC2004/Main/home.html [March 15, 2005]

See Also

See also cvdisc, scoreplot

Examples

## Use first 500 rows (expression values) of Golub, for demonstration.
data(Golub)
data(golubInfo)
attach(golubInfo)
miniG.BM <- Golub[1:500, BM.PB=="BM"]  # 1st 500 rows only
cancer.BM <- cancer[BM.PB=="BM"]
miniG.cv <- cvdisc(miniG.BM, cl=cancer.BM, nfeatures=1:10,
                    nfold=c(3,1))
miniG.scores <- cvscores(cvlist=miniG.cv, nfeatures=4,
                         cl.other=NULL)
detach(golubInfo)

## The function is currently defined as
function(cvlist, nfeatures, ndisc=NULL, cl.other, x.other,
           keepcols=NULL, print.progress=TRUE
           ){
    library(MASS)
    foldids <- cvlist$foldids
    nfold <- c(length(unique(foldids)), dim(foldids)[2])

    ugenes <- unique(as.vector(cvlist$genelist[1:nfeatures, ,]))
    df <- cvlist$xUsed[, ugenes]
    cl <- cvlist$cl
    if(!length(cl)==dim(df)[1])
      stop(paste("length(cl) =", length(cl),"does not equal",
                 "dim(cvlist$df)[1] =", dim(df)[1]))
    levnames <- levels(cl)
    if(is.null(ndisc))ndisc <- length(levnames)-1
    ngp <- length(levnames)
    nobs <- dim(df)[1]
    allscores <- array(0, dim=c(nrow=nobs, ncol=ndisc*nfold[1], nleaf=nfold[2]))
    if(!is.null(cl.other)){
      cl.other <- factor(cl.other)
      if(is.null(dim(x.other)))stop("x.other must have dimension 2")
      if(!length(cl.other)==dim(x.other)[2])
        stop(paste("length(cl.other) =", length(cl.other),"does not equal",
                   "dim(x.other)[2] =", dim(x.other)[2]))
      df.other <- data.frame(t(x.other[ugenes, ,drop=FALSE]))
      colnames(df.other) <- ugenes
    }
    else other.scores <- NULL
    for(k in 1:nfold[2]){
      foldk <- foldids[,k]
      ufold <- sort(unique(foldk))
      j <- 0
      for(i in ufold){
        j <- j+1
        if(print.progress)cat(paste(if(j>1) ":" else "", i,sep=""))
        testi <- (1:nobs)[foldk==i]
        traini <- (1:nobs)[foldk!=i]
        ntest <- length(testi)
        ntrain <- nobs-ntest
        genes.i <- cvlist$genelist[1:nfeatures, i, k]
        dfi <- as.data.frame(df[-testi, genes.i, drop=FALSE])
        newdfi <- as.data.frame(df[testi, genes.i, drop=FALSE])
        cli <- cl[-testi]
        xy.xda <- lda(cli~., data=dfi)
        allscores[, ((i-1)*ndisc)+(1:ndisc), k] <-
          predict(xy.xda, newdata=df, dimen=ndisc)$x
      }
    }
    cat("\n")
    dim(allscores) <- c(nobs, ndisc*prod(nfold))
    if(is.null(keepcols))keepcols <- min(nfeatures, dim(allscores)[2])
    allscores.pcp <- data.frame(pcp(allscores, varscores=FALSE)$g[, 1:keepcols])
    globals <- predict(lda(cl ~ ., data=allscores.pcp))$x[,1:ndisc]
    fitscores <- array(0, dim=c(nrow=nobs, ncol=ndisc, nleaf=nfold[2]))
    for(k in 1:nfold[2]){
      foldk <- foldids[,k]
      ufold <- sort(unique(foldk))
##      ntimes.genes <- table(cvlist$genelist[1:nfeatures,,k])
      av <- colMeans(df)
      j <- 0
      for(i in ufold){
        j <- j+1
        cat(paste(if (j>1) ":" else "", i,sep=""))
        testi <- (1:nobs)[foldk==i]
        traini <- (1:nobs)[foldk!=i]
        genes.i <- cvlist$genelist[1:nfeatures, i, k]
        dfi <- data.frame(df[-testi, genes.i, drop=FALSE])
        newdfi <- data.frame(df[testi, genes.i, drop=FALSE])
        cli <- cl[-testi]
        traini.xda <- lda(cli~., data=dfi)
        scorei <- predict(traini.xda)$x[,1:ndisc]
        newpred.xda <- predict(traini.xda, newdata=newdfi)
        scorei.out <- newpred.xda$x[, 1:ndisc, drop=FALSE]
        scorei.all <- globals[-testi, 1:ndisc]
        avcol <- colMeans(scorei.all)
        scorei.all <- sweep(scorei.all, 2, avcol,"-")
        avi <- colMeans(scorei)
        scorei <- sweep(scorei, 2, avi,"-")
        trans <- qr.solve(scorei, scorei.all)
        scorei.out <- sweep(scorei.out, 2, avi, "-")
        fitscores[testi, , k] <- sweep(scorei.out%*%trans, 2, avcol, "+")
      }
    }
    fitscores <- apply(fitscores, 1:2, mean)

    if(!is.null(cl.other)){
      Fmatrix <- cvlist$Fmatrix
      ord <- order(Fmatrix)[1:nfeatures]
      rowcol <- cbind(as.vector(row(Fmatrix))[ord],as.vector(col(Fmatrix))[ord])
      ugenes <- unique(as.vector(cvlist$genelist[rowcol]))
      df <- cvlist$xUsed[, ugenes]
      xy.xda <- lda(cl~., data=df)
      train.scores <- predict(xy.xda, dimen=ndisc)$x
      other.scores <- predict(xy.xda, newdata=df.other,
                              dimen=ndisc)$x
      avcol <- colMeans(globals)
      all.scores <- sweep(globals, 2, avcol,"-")
      av.train <- colMeans(train.scores)
      train.scores <- sweep(train.scores, 2, av.train, "-")
      trans <- qr.solve(train.scores, all.scores)
      other.scores <- sweep(other.scores%*%trans, 2, avcol, "+")
    }
    if(print.progress)cat("\n")
    invisible(list(scores=fitscores, cl=cl, other=other.scores,
                   cl.other=cl.other, nfeatures=nfeatures))
  }

[Package hddplot version 0.59-2 Index]