| Exponential {hawkesbow} | R Documentation |
Reproduction kernels for the Hawkes processes
Description
These classes are derived from the class Model, each implementing
a different reproduction kernel for the Hawkes process.
They inherit all fields from Model.
Details
The kernel
Exponentialhas density functionh^\ast(t) = \beta \exp(-\beta t) 1_{\{t \ge 0\}}.Its vector of parameters must be of the form
(\eta, \mu, \beta). Bothloglik, its derivatives, andwhittlecan be used with this reproduction kernel.The kernel
SymmetricExponentialhas density functionh^\ast(t) = 0.5 \beta \exp(-\beta |t|).Its vector of parameters must be of the form
(\eta, \mu, \beta). Onlywhittlecan be used with this reproduction kernel.The kernel
Gaussianhas density functionh^\ast(t) = \frac{1}{\sigma \sqrt{2\pi}}\exp\left(-\frac{(t-\nu)^2}{2\sigma^2}\right).Its vector of parameters must be of the form
(\eta, \mu, \nu, \sigma^2). Onlywhittleis available with this reproduction kernel.The kernel
PowerLawhas density functionh^\ast(t) = \theta a^\theta (t+a)^{-\theta-1} 1_{\{\theta > 0 \}}.Its vector of parameters must be of the form
(\eta, \mu, \theta, a). Bothloglik, its derivatives, andwhittlecan be used with this reproduction kernel.The kernels
Pareto3,Pareto2andPareto1have density functionh_\theta^\ast(t) = \theta a^\theta t^{-\theta - 1} 1_{\{t > a\}},with
\theta= 3, 2 and 1 respectively. Their vectors of parameters must be of the form(\eta, \mu, a). Onlywhittleis available with this reproduction kernel.