E1_imaginary {hawkesbow} | R Documentation |
Exponential integral of imaginary argument
Description
Calculates the value of
E_1(ix) = \int_1^\infty \frac{e^{-ixt}}{t} \mathrm{d}t
using its relation to the trigonometric integrals (cf. https://en.wikipedia.org/wiki/Exponential_integral#Exponential_integral_of_imaginary_argument):
E_1(ix) = i \left[ -\frac{1}{2} \pi + Si(x) \right] - Ci(x)
and their Pad\'e approximants (cf. https://en.wikipedia.org/wiki/Trigonometric_integral#Efficient_evaluation)
Usage
E1_imaginary(x)
Arguments
x |
A non-negative number |
Value
The exponential integral of argument ix
Examples
E1_imaginary(1.0)
[Package hawkesbow version 1.0.3 Index]