alt_delta |
Rescorla-Wagner (Delta) Model |
alt_gamma |
Rescorla-Wagner (Gamma) Model |
bandit2arm_delta |
Rescorla-Wagner (Delta) Model |
bandit4arm2_kalman_filter |
Kalman Filter |
bandit4arm_2par_lapse |
3 Parameter Model, without C (choice perseveration), R (reward sensitivity), and P (punishment sensitivity). But with xi (noise) |
bandit4arm_4par |
4 Parameter Model, without C (choice perseveration) |
bandit4arm_lapse |
5 Parameter Model, without C (choice perseveration) but with xi (noise) |
bandit4arm_lapse_decay |
5 Parameter Model, without C (choice perseveration) but with xi (noise). Added decay rate (Niv et al., 2015, J. Neuro). |
bandit4arm_singleA_lapse |
4 Parameter Model, without C (choice perseveration) but with xi (noise). Single learning rate both for R and P. |
banditNarm_2par_lapse |
3 Parameter Model, without C (choice perseveration), R (reward sensitivity), and P (punishment sensitivity). But with xi (noise) |
banditNarm_4par |
4 Parameter Model, without C (choice perseveration) |
banditNarm_delta |
Rescorla-Wagner (Delta) Model |
banditNarm_kalman_filter |
Kalman Filter |
banditNarm_lapse |
5 Parameter Model, without C (choice perseveration) but with xi (noise) |
banditNarm_lapse_decay |
5 Parameter Model, without C (choice perseveration) but with xi (noise). Added decay rate (Niv et al., 2015, J. Neuro). |
banditNarm_singleA_lapse |
4 Parameter Model, without C (choice perseveration) but with xi (noise). Single learning rate both for R and P. |
bart_ewmv |
Exponential-Weight Mean-Variance Model |
bart_par4 |
Re-parameterized version of BART model with 4 parameters |
cgt_cm |
Cumulative Model |
choiceRT_ddm |
Drift Diffusion Model |
choiceRT_ddm_single |
Drift Diffusion Model |
cra_exp |
Exponential Subjective Value Model |
cra_linear |
Linear Subjective Value Model |
dbdm_prob_weight |
Probability Weight Function |
dd_cs |
Constant-Sensitivity (CS) Model |
dd_cs_single |
Constant-Sensitivity (CS) Model |
dd_exp |
Exponential Model |
dd_hyperbolic |
Hyperbolic Model |
dd_hyperbolic_single |
Hyperbolic Model |
estimate_mode |
Function to estimate mode of MCMC samples |
extract_ic |
Extract Model Comparison Estimates |
gng_m1 |
RW + noise |
gng_m2 |
RW + noise + bias |
gng_m3 |
RW + noise + bias + pi |
gng_m4 |
RW (rew/pun) + noise + bias + pi |
HDIofMCMC |
Compute Highest-Density Interval |
igt_orl |
Outcome-Representation Learning Model |
igt_pvl_decay |
Prospect Valence Learning (PVL) Decay-RI |
igt_pvl_delta |
Prospect Valence Learning (PVL) Delta |
igt_vpp |
Value-Plus-Perseverance |
multiplot |
Function to plot multiple figures |
peer_ocu |
Other-Conferred Utility (OCU) Model |
plotDist |
Plots the histogram of MCMC samples. |
plotHDI |
Plots highest density interval (HDI) from (MCMC) samples and prints HDI in the R console. HDI is indicated by a red line. Based on John Kruschke's codes. |
plotInd |
Plots individual posterior distributions, using the stan_plot function of the rstan package |
printFit |
Print model-fits (mean LOOIC or WAIC values in addition to Akaike weights) of hBayesDM Models |
prl_ewa |
Experience-Weighted Attraction Model |
prl_fictitious |
Fictitious Update Model |
prl_fictitious_multipleB |
Fictitious Update Model |
prl_fictitious_rp |
Fictitious Update Model, with separate learning rates for positive and negative prediction error (PE) |
prl_fictitious_rp_woa |
Fictitious Update Model, with separate learning rates for positive and negative prediction error (PE), without alpha (indecision point) |
prl_fictitious_woa |
Fictitious Update Model, without alpha (indecision point) |
prl_rp |
Reward-Punishment Model |
prl_rp_multipleB |
Reward-Punishment Model |
pstRT_ddm |
Drift Diffusion Model |
pstRT_rlddm1 |
Reinforcement Learning Drift Diffusion Model 1 |
pstRT_rlddm6 |
Reinforcement Learning Drift Diffusion Model 6 |
pst_gainloss_Q |
Gain-Loss Q Learning Model |
pst_Q |
Q Learning Model |
ra_noLA |
Prospect Theory, without loss aversion (LA) parameter |
ra_noRA |
Prospect Theory, without risk aversion (RA) parameter |
ra_prospect |
Prospect Theory |
rdt_happiness |
Happiness Computational Model |
rhat |
Function for extracting Rhat values from an hBayesDM object |
task2AFC_sdt |
Signal detection theory model |
ts_par4 |
Hybrid Model, with 4 parameters |
ts_par6 |
Hybrid Model, with 6 parameters |
ts_par7 |
Hybrid Model, with 7 parameters (original model) |
ug_bayes |
Ideal Observer Model |
ug_delta |
Rescorla-Wagner (Delta) Model |
wcs_sql |
Sequential Learning Model |