tbl_regression_methods {gtsummary} | R Documentation |
Methods for tbl_regression
Description
Most regression models are handled by tbl_regression()
,
which uses broom::tidy()
to perform initial tidying of results. There are,
however, some model types that have modified default printing behavior.
Those methods are listed below.
Usage
## S3 method for class 'model_fit'
tbl_regression(x, ...)
## S3 method for class 'workflow'
tbl_regression(x, ...)
## S3 method for class 'survreg'
tbl_regression(
x,
tidy_fun = function(x, ...) dplyr::filter(broom::tidy(x, ...), .data$term !=
"Log(scale)"),
...
)
## S3 method for class 'mira'
tbl_regression(x, tidy_fun = pool_and_tidy_mice, ...)
## S3 method for class 'mipo'
tbl_regression(x, ...)
## S3 method for class 'lmerMod'
tbl_regression(
x,
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
...
)
## S3 method for class 'glmerMod'
tbl_regression(
x,
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
...
)
## S3 method for class 'glmmTMB'
tbl_regression(
x,
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
...
)
## S3 method for class 'glmmadmb'
tbl_regression(
x,
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
...
)
## S3 method for class 'stanreg'
tbl_regression(
x,
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
...
)
## S3 method for class 'brmsfit'
tbl_regression(
x,
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
...
)
## S3 method for class 'gam'
tbl_regression(x, tidy_fun = tidy_gam, ...)
## S3 method for class 'tidycrr'
tbl_regression(x, tidy_fun = tidycmprsk::tidy, ...)
## S3 method for class 'crr'
tbl_regression(x, ...)
## S3 method for class 'multinom'
tbl_regression(x, ...)
Arguments
x |
(regression model) |
... |
arguments passed to |
tidy_fun |
( |
Methods
The default method for tbl_regression()
model summary uses broom::tidy(x)
to perform the initial tidying of the model object. There are, however,
a few models that use modifications.
-
"parsnip/workflows"
: If the model was prepared using parsnip/workflows, the original model fit is extracted and the originalx=
argument is replaced with the model fit. This will typically go unnoticed; however,if you've provided a custom tidier intidy_fun=
the tidier will be applied to the model fit object and not the parsnip/workflows object. -
"survreg"
: The scale parameter is removed,broom::tidy(x) %>% dplyr::filter(term != "Log(scale)")
-
"multinom"
: This multinomial outcome is complex, with one line per covariate per outcome (less the reference group) -
"gam"
: Uses the internal tidiertidy_gam()
to print both parametric and smooth terms. -
"lmerMod"
,"glmerMod"
,"glmmTMB"
,"glmmadmb"
,"stanreg"
,"brmsfit"
: These mixed effects models usebroom.mixed::tidy(x, effects = "fixed")
. Specifytidy_fun = broom.mixed::tidy
to print the random components.