scale {grt} | R Documentation |
Scale method for the class 'glc' and 'gqc'
Description
Return the discriminant scores obtained by applying the general linear classifier to the fitted data.
Usage
## S3 method for class 'glc'
scale(x, initdb = FALSE, zlimit = Inf, ...)
## S3 method for class 'gqc'
scale(x, initdb = FALSE, zlimit = Inf, ...)
Arguments
x |
object of class |
initdb |
optional logical. If |
zlimit |
optional numeric. Used to truncate the scores beyond the speficied value. Default to |
... |
further arguments (currently unused) |
Note
The generic function scale
is redefined to accept arguments other than x
, center
, and scale
.
Examples
data(subjdemo_2d)
fit.2dl <- glc(response ~ x + y, data=subjdemo_2d,
category=subjdemo_2d$category, zlimit=7)
scale(fit.2dl)
fit.2dq <- gqc(response ~ x + y, data=subjdemo_2d,
category=subjdemo_2d$category, zlimit=7)
scale(fit.2dq)
## Not run:
#plots using the discriminant scores
require(Hmisc)
options(digits=3)
fit.2dl <- glc(response ~ x + y, data=subjdemo_2d,
category=subjdemo_2d$category, zlimit=7)
# z-scores based on the initial decision bound
# split by the true category membership
zinit <- split(scale(fit.2dl, initdb=TRUE), subjdemo_2d$category)
histbackback(zinit)
# z-scores based on the fitted decision bound
# split by the participants' response
zfit1 <- split(scale(fit.2dl, initdb=FALSE), subjdemo_2d$category)
histbackback(zfit1)
# z-scores based on the fitted decision bound
# split by the true category membership
zfit2 <- split(scale(fit.2dl, initdb=FALSE), subjdemo_2d$response)
histbackback(zfit2)
## End(Not run)
[Package grt version 0.2.1 Index]