gqc {grt} | R Documentation |
General Quadratic Classifier
Description
Fit a general quadratic classifier (a.k.a. quadratic decison-bound model).
Usage
gqc(formula,
data,
category,
par = list(),
zlimit = Inf,
fixed = list(),
opt = c("nlminb", "optim"),
lower=-Inf,
upper=Inf,
control=list())
Arguments
formula |
A formula of the form |
data |
A data frame from which variables specified in |
category |
(Optional.) A factor specifying the true category membership of the stimuli. |
par |
object of class |
zlimit |
numeric. The z-scores (or discriminant scores) beyond the specified value will be truncated. Default to |
fixed |
A named list of logical vectors specifying whether each of |
opt |
A character string specifying the optimizer to be used: either |
lower , upper |
Bounds on the parameters. Default values of lower and upper are |
control |
A list of control parameters passed to the optimizer. See ‘Details’ of |
Details
If par
is not fully specified in the argument, the function attempts to calculate the initial parameter values by internally calling the functions mcovs
and qdb
. The response specified in the formula
is used as the grouping factor in mcovs
.
Value
object of class gqc
, i.e., a list containing the following components:
terms |
the |
call |
the matched call. |
model |
the design matrix used to fit the model. |
category |
the category vector as specified in the input. |
initpar |
the initial parameter used to fit the model. |
par |
the fitted parameter. |
logLik |
the log-likelihood at convergence. |
References
Alfonso-Reese, L. A. (2006) General recognition theory of categorization: A MATLAB toolbox. Behavior Research Methods, 38, 579-583.
Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and categorization of multidimensional stimuli. Journal of Experimental Psychology: Learning, Memory, & Cognition, 14, 33-53.
Ashby, F. G. (1992) Multidimensional models of perception and cognition. Lawrence Erlbaum Associates.
See Also
glc
,
qdb
,
logLik.gqc
,
logLik.gqcStruct
,
plot.gqc
,
plot3d.gqc
Examples
data(subjdemo_2d)
fit.2dq <- gqc(response ~ x + y, data=subjdemo_2d,
category=subjdemo_2d$category, zlimit=7)