| gqc {grt} | R Documentation |
General Quadratic Classifier
Description
Fit a general quadratic classifier (a.k.a. quadratic decison-bound model).
Usage
gqc(formula,
data,
category,
par = list(),
zlimit = Inf,
fixed = list(),
opt = c("nlminb", "optim"),
lower=-Inf,
upper=Inf,
control=list())
Arguments
formula |
A formula of the form |
data |
A data frame from which variables specified in |
category |
(Optional.) A factor specifying the true category membership of the stimuli. |
par |
object of class |
zlimit |
numeric. The z-scores (or discriminant scores) beyond the specified value will be truncated. Default to |
fixed |
A named list of logical vectors specifying whether each of |
opt |
A character string specifying the optimizer to be used: either |
lower, upper |
Bounds on the parameters. Default values of lower and upper are |
control |
A list of control parameters passed to the optimizer. See ‘Details’ of |
Details
If par is not fully specified in the argument, the function attempts to calculate the initial parameter values by internally calling the functions mcovs and qdb. The response specified in the formula is used as the grouping factor in mcovs.
Value
object of class gqc, i.e., a list containing the following components:
terms |
the |
call |
the matched call. |
model |
the design matrix used to fit the model. |
category |
the category vector as specified in the input. |
initpar |
the initial parameter used to fit the model. |
par |
the fitted parameter. |
logLik |
the log-likelihood at convergence. |
References
Alfonso-Reese, L. A. (2006) General recognition theory of categorization: A MATLAB toolbox. Behavior Research Methods, 38, 579-583.
Ashby, F. G., & Gott, R. E. (1988). Decision rules in the perception and categorization of multidimensional stimuli. Journal of Experimental Psychology: Learning, Memory, & Cognition, 14, 33-53.
Ashby, F. G. (1992) Multidimensional models of perception and cognition. Lawrence Erlbaum Associates.
See Also
glc,
qdb,
logLik.gqc,
logLik.gqcStruct,
plot.gqc,
plot3d.gqc
Examples
data(subjdemo_2d)
fit.2dq <- gqc(response ~ x + y, data=subjdemo_2d,
category=subjdemo_2d$category, zlimit=7)