extractAIC {grt} | R Documentation |
extractAIC method for class 'glc', 'gqc', 'gcjc', and 'grg'
Description
Extract Akaike's An Information Criteria from a General Linear, Quadratic, or Conjunctive Classifier, or a General Random Guessing model
Usage
## S3 method for class 'glc'
extractAIC(fit, scale, k = 2, ...)
## S3 method for class 'gqc'
extractAIC(fit, scale, k = 2, ...)
## S3 method for class 'gcjc'
extractAIC(fit, scale, k = 2, ...)
## S3 method for class 'grg'
extractAIC(fit, scale, k = 2, ...)
Arguments
fit |
object of class |
scale |
unused argument |
k |
numeric specifying the penalty per parameter to be used in calculating AIC. Default to 2. |
... |
further arguments (currently not used). |
Details
As with the default method, the criterion used is
AIC = - 2\log L + k \times \mbox{df},
where L
is the likelihood and df
is the degrees
of freedom (i.e., the number of free parameters) of fit
.
Value
A numeric vector of length 2 including:
df |
the degrees of freedom for the fitted model |
AIC |
the Akaike's Information Criterion for |
Examples
data(subjdemo_2d)
#fit a 2d suboptimal model
fit.2dl <- glc(response ~ x + y, data=subjdemo_2d,
category=subjdemo_2d$category, zlimit=7)
extractAIC(fit.2dl)
[Package grt version 0.2.1 Index]