dprime {grt} | R Documentation |
Calculate d' (d-prime)
Description
Obtain the standardized distance between the two probability distributions, known as d' or sensitivity index.
Usage
dprime(x,
category,
response,
par = list(),
zlimit = Inf,
type = c("SampleIdeal", "Observer"))
dprimef(means, covs, noise=NULL)
Arguments
x |
a data frame or matrix containing samples from two multivariate normal distributions. |
category |
a vector or factor of labels of populations to which the samples belong |
response |
a vector or factor specifying the participant's classification responses for each samples |
par |
object of class |
zlimit |
numeric. The z-scores (or discriminant scores) beyond the specified value will be truncated and replaced with that value. Default to |
type |
a character string specifying the type of d' to be returned. If |
means |
a list of numeric vectors containing the means of two distributions |
covs |
a matrix or a list of matrices containing the variance-covariance matrix of the two distributions |
noise |
numeric. perceptual and criterial noise expressed as standard deviation. Default to |
Details
The function dprime
estimates d' from sample data sets, whereas the function dprimef
calculates it from population parameters.
In dprime
, if any parts of the argument par
are missing, the function will estimate an optimal linear decision bound from supplied x
and category
. The argument response
is not used if type
is SampleIdeal
.
Author(s)
Author of the original Matlab routines: Leola Alfonso-Reese
Author of R adaptation: Kazunaga Matsuki
References
Alfonso-Reese, L. A. (2006) General recognition theory of categorization: A MATLAB toolbox. Behavior Research Methods, 38, 579-583.
Examples
data(subjdemo_2d)
d2 <- subjdemo_2d
db <- glcStruct(noise=10, coeffs=c(0.514,-0.857),bias=-0.000154)
dprime(d2[,2:3], d2$category, d2$response, par = db, zlimit=7, type='SampleIdeal')
mc <- mcovs(category ~ x + y, data=d2)
dprimef(mc$means, mc$covs)