data_slice {gratia} | R Documentation |
Prepare a data slice through model covariates
Description
Prepare a data slice through model covariates
Usage
data_slice(object, ...)
## Default S3 method:
data_slice(object, ...)
## S3 method for class 'data.frame'
data_slice(object, ...)
## S3 method for class 'gam'
data_slice(object, ..., data = NULL, envir = NULL)
## S3 method for class 'gamm'
data_slice(object, ...)
## S3 method for class 'list'
data_slice(object, ...)
## S3 method for class 'scam'
data_slice(object, ...)
Arguments
object |
an R model object. |
... |
< |
data |
an alternative data frame of values containing all the variables
needed to fit the model. If |
envir |
the environment within which to recreate the data used to fit
|
Examples
load_mgcv()
# simulate some Gaussian data
df <- data_sim("eg1", n = 50, seed = 2)
# fit a GAM with 1 smooth and 1 linear term
m <- gam(y ~ s(x2, k = 7) + x1, data = df, method = "REML")
# Want to predict over f(x2) while holding `x1` at some value.
# Default will use the observation closest to the median for unspecified
# variables.
ds <- data_slice(m, x2 = evenly(x2, n = 50))
ds
# for full control, specify the values you want
ds <- data_slice(m, x2 = evenly(x2, n = 50), x1 = 0.3)
# or provide an expression (function call) which will be evaluated in the
# data frame passed to `data` or `model.frame(object)`
ds <- data_slice(m, x2 = evenly(x2, n = 50), x1 = mean(x1))
[Package gratia version 0.9.2 Index]