gmodel.block {graphon} | R Documentation |
Generate binary random graphs based on stochastic blockmodel
Description
Given a (K\times K)
stochastic blockmodel W, gmodel.block
generates an (n-by-n) binary random graphs. All K blocks have
same number of nodes, or almost identical if n is not a multiple
of K. Parameter noloop
controls whether generated observations
have an edge from a node to itself, called a loop.
Usage
gmodel.block(W, n, rep = 1, noloop = TRUE)
Arguments
W |
a |
n |
the number of nodes for each observation. |
rep |
the number of observations to be generated. |
noloop |
a logical value; TRUE for graphs without self-loops, FALSE otherwise. |
Value
a named list containing
- G
depending on
rep
value,- (rep=1)
an
(n\times n)
observation, or- (rep>1)
a length-
rep
list where each element is an observation is an(n\times n)
realization from the model.
- P
an
(n\times n)
probability matrix of generating each edge.
See Also
Examples
## set inputs
W = matrix(c(0.9,0.2,0.2,0.7),nr=2)
n = 200
## generate 2 observations without self-loops.
out <- gmodel.block(W,n,rep=2,noloop=TRUE)
## visualize generated graphs
opar = par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
image(out$G[[1]]); title("Observation 1")
image(out$G[[2]]); title("Observation 2")
par(opar)
[Package graphon version 0.3.5 Index]