gmodel.P {graphon} | R Documentation |
Generate graphs given a probability matrix
Description
Given an (n\times n)
probability matrix P
, gmodel.P
generates
binary observation graphs corresponding to Bernoulli distribution
whose parameter matches to the element of P
.
Usage
gmodel.P(P, rep = 1, noloop = TRUE, symmetric.out = FALSE)
Arguments
P |
an |
rep |
the number of observations to be generated. |
noloop |
a logical value; TRUE for graphs without self-loops, FALSE otherwise. |
symmetric.out |
a logical value; FALSE for generated graphs to be nonsymmetric, TRUE otherwise. Note that TRUE is supported only if the input matrix P is symmetric. |
Value
depending on rep
value, either
- (rep=1)
an
(n-by-n)
observation matrix, or- (rep>1)
a length-
rep
list where each element is an observation is an(n-by-n)
realization from the model.
Examples
## set inputs
modelP <- matrix(runif(16),nrow=4)
## generate 3 observations without self-loops.
out <- gmodel.P(modelP,rep=3,noloop=TRUE)
## visualize generated graphs
opar = par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
image(out[[1]], main="1st sample")
image(out[[2]], main="2nd sample")
image(out[[3]], main="3rd sample")
par(opar)
[Package graphon version 0.3.5 Index]