graphClustering {graphclust} | R Documentation |
Hierarchical graph clustering algorithm
Description
Applies the hierarchical graph clustering algorithm to a collection of networks and fits a finite mixture model of stochastic block models to the data
Usage
graphClustering(
allAdj,
hyperParam = list(alpha = 0.5, eta = 0.5, zeta = 0.5, lambda = 0.5),
returnInitial = FALSE,
nbClust = NULL,
nbSBMBlocks = Inf,
initCountStat = NULL,
initDeltaICL = NULL,
nbCores = 1
)
Arguments
allAdj |
list of adjacency matrices |
hyperParam |
hyperparameters of prior distributions |
returnInitial |
Boolean. Return SBM parameters from initialization or not. Default is FALSE. |
nbClust |
desired number of clusters. Default NULL, which means that the number of clusters is chosen automatically via the ICL criterion |
nbSBMBlocks |
upper bound for the number of blocks in the SBMs of the mixture components. Default is Inf |
initCountStat |
initial count statistics may be provided to the method. Default is NULL. |
initDeltaICL |
initial deltaICL-matrix may be provided to the method. Default is NULL. |
nbCores |
number of cores for parallelization |
Value
list with the following fields: $graphGroups is the graph clustering, $nodeClusterings is a list with the node labels for each networks, $thetaMixSBM contains the estimated parameter of the mixture of SBMs, $ICL is the value of the ICL criterion of the final clustering, $histGraphGroups traces the history of the cluster aggregations, $histDeltaICL traces the evolution of the deltaICL value, $histFusedClusters traces the history of the aggregated cluster numbers
Examples
theta <- list(pi=c(.5,.5), gamma=matrix((1:4)/8,2,2))
obs <- rCollectSBM(rep(10,4), theta)$listGraphs
res <- graphClustering(obs, nbCores=1)