GetSignificantGenes {grandR} | R Documentation |
Significant genes
Description
Return significant genes for this grandR object
Usage
GetSignificantGenes(
data,
analysis = NULL,
regex = TRUE,
criteria = NULL,
as.table = FALSE,
use.symbols = TRUE,
gene.info = TRUE
)
Arguments
data |
the grandR object |
analysis |
the analysis to use, can be more than one and can be regexes (see details) |
regex |
interpret analyses as regex? |
criteria |
the criteria used to define what significant means; if NULL, Q<0.05 & abs(LFC)>=1 is used; can use the column names of the analysis table as variables, should be a logical or numerical value per gene (see Details) |
as.table |
return a table |
use.symbols |
return them as symbols (gene ids otherwise) |
gene.info |
add gene infos to the output table |
Details
The analysis parameter (just like for GetAnalysisTable can be a regex (that will be matched against all available analysis names). It can also be a vector (of regexes). Be careful with this, if more than one table e.g. with column LFC ends up in here, only the first is used (if criteria=LFC).
The criteria parameter can be used to define how analyses are performed. If criteria is a logical, it obtains significant genes defined by cut-offs (e.g. on q value and LFC). If it is a numerical, all genes are returned sorted (descendingly) by this value. The columns of the given analysis table(s) can be used to build this expression.
Value
a vector of gene names (or symbols), or a table
Examples
sars <- ReadGRAND(system.file("extdata", "sars.tsv.gz", package = "grandR"),
design=c(Design$Condition,Design$dur.4sU,Design$Replicate))
sars <- subset(sars,Coldata(sars,Design$dur.4sU)==2)
sars<-LFC(sars,mode="total",contrasts=GetContrasts(sars,contrast=c("Condition","Mock")))
GetSignificantGenes(sars,criteria=LFC>1)